Comp202 – Principles of Object Oriented Programming II
EXAM #1

Rice University - Instructors: Wong & Nguyen

NAME & ID#: _______________________________

Instructions
1. This is an open-notes, open-book, open-Internet exam.

2. You will not be penalized on trivial syntax errors, such as a missing parenthesis. Multiple errors or errors that lead to ambiguous code will have points deducted, however.

3. In all of the questions, feel free to write additional helper methods to get the job done.

4. The emphasis is on correctness of the code, not efficiency or on simply generating the right result.

5. You are free to use any code that was given to you in the lectures and labs.

Please write and sign the Rice Honor Pledge here:

	1
	2
	3a
	3b
	3c
	3d
	Total

	/15 pts
	/25 pts
	/15 pts
	/15 pts
	/15 pts
	/15 pts
	/100 pts

1. (15 pts) Lazy Evaluation: Write an ALazyEval , called lrs.lazyEvals.LazyNFacInvEval, that creates an infinite lazy LRStruct containing the coefficients of the Taylor series expansion of ex for x around zero, which are just 1/n! for n=0, 1, 2, …:

[image: image1.wmf]þ

ý

ü

î

í

ì

L

,

!

4

1

,

!

3

1

,

!

2

1

,

!

1

1

,

!

0

1

The stub and test code are in the lazyEvalCode subdirectory of the exam download. If you run the “Sum N terms” visitor on your lazy list, you should get the value of ex for x=1 i.e the value of e itself! (N is the value in the “B” input on the GUI.)

YOUR CODE SHOULD NOT RECALCULATE n! EVERY TIME!

Insert your code for LazyNFacInvEval here.

2. (25 pts total) Polynomials: Consider the following model of a polynomial.

A polynomial of one variable, p(x),is an expression of the form

anxn + an-1xn-1+ ... + a1x + a0,

where n is a non-negative integer, ak (k = 0.. n) are numbers, and an is a number not equal to 0. n is called the order (or degree) of p(x), ak(k = 0.. n) are called the coefficients of p(x), and an is called the leading coefficient of p(x).

For example:

· p(x) = 12x5 - 3x2 + 7 is a polynomial of degree (order) 5 with leading coefficient 12. -3x2 + 7 is called the lower order polynomial for p(x).

· p(x) = 7 is a polynomial of degree 0 with leading coefficient 7. This is an example of a constant polynomial. It has no lower order polynomial.

We can describe polynomials in the following manner. There is an abstraction called polynomial. A constant polynomial is a polynomial with a leading coefficient and order (degree) 0. A non-constant polynomial is a polynomial with a leading coefficient, a positive order, and a lower order polynomial. Constant polynomials do not contain lower order polynomials.

Forward Accumulation: Write a visitor, called poly.op.EvalHorner, that evaluates a Polynomial for a given value of x. Your solution should use forward accumulation.

The evaluation technique you are required to use is called “Horner’s method” which utilizes the fact that a polynomial can be decomposed as follows:

anxn + an-1xn-1+ ... + a1x + a0

= ((..(anx + an-1) x + an-2)x + an-3)x + ... + a1)x + a0
Notice how the factors of x to some power are eliminated. If you look at the right hand side of the above equation as a process going from the innermost parentheses on the left towards the right, Horner’s method can be described as follows:

i) When at the first term

a) Base case: then the constant value of the Polynomial is the result

b) Inductive case: the result is the evaluation of the rest of the Polynomial where the accumulated value so far is simply the coefficient.

ii) When in the middle of an evaluation,

a) Base case: the final evaluation of the whole Polynomial is the previous accumulated value times x raised to the power of the previous term (You may use the Math.pow(double a, double b) function) plus the current constant value.

b) Inductive case: the result is the evaluation of the rest of the Polynomial where the accumulated value so far is the previous accumulated value time x raised to the power of the difference between the previous order and this order (may not be 1 if there are missing terms; for example, in the above equation, what if an-1 and an-2 are both zero?) plus the current coefficient.

Below is a UML diagram of the polynomial system.

Note: StructureBuilder is unable to parse or display variable argument lists, so wherever you see “Object[]” on the UML diagram, please replace it with “Object …” Also, any class whose name begins with “CompPolyFact$” is a nested class of CompPolyFact.

[image: image2.png]ToString EvalHorner

<1
T | !

v v

PolyOp==
+ Object - consiCaseliConstPoly pol, Oectl] np)
+ Object - nonConsiCase(INCPol pol, Object] i)

3 T
accepts| Irisits

1 v

linstantiates

—TPoly==
TPolyFac= + doubl - gaiLeadCoefl)
+ [ConstPoly - makeConsiPobyautle cog) + i geOrder)
+ INCPoly - makeNCPoly(doublecoef, it order, IPoly owPo) + Object: exccutelPohOp op, Oject o) |1
]]]
! ! CPoly-
| [ConstPoly>= | ol
| | + [Fob - getloverPohl)
| |
CompPeFat ‘ | 7
+ CompPolyFart Siagieton I | I
= CompPolyFact) | CompPolyFactSAPoly |
-+ [ConstPoly - makeConstPoly(dovible cost) I = o _coef |
+ INCPoly - makeNCPoly{dovble cocf,int rder, Poly lovPoly | EaT |
—h I + dovdle - getLeadCoef() |
e | -+ Steing - oStriog() 1
| |
| |
|
|

| I
L — _ = CompPohFactsConstPaly ‘

| CompPalyFactSNCPaly

The stub and test code can be found in the polynomialCode subdirectory of the exam download.

Insert your code for EvalHorner here.

1. (60 pts) Higher order functions/visitors.

The test and stub code for the following problems can be found in the higherOrderCode subdirectory of the exam download.

A. (15 pts) Create a visitor to concatenate two IList using an appropriate Fold?IList visitor and an appropriate ILambda. The specification of the problem is given in the form of a JUnit test case, Test_Append.java, in the package listFW.visitor.fold.test. Complete the stubbed out code in Test_Append.java as specified. You are free to use any code that was given to you in the lectures and labs.

Insert your code for Test_Append here.

B. (15 pts) Write a BiTree visitor called ListInOrderRev that returns an IList containing the elements of the host tree in in-order traversal. ListInOrderRev should take in an IListFactory in the constructor. The specification is given in the form of a JUnit test case, Test_ListInOrderRev, in the package brs.visitor.test. Complete the stubbed out code of ListInOrderRev.java in package brs.visitor as specified

Insert your code for ListInOrderRev here.
C. (15 pts) Write an ILambda, called HigherOrderListInOrderRev, to compute an IList containing the elements of the host BiTree in in-order traversal, using the "higher-order" visitor InOrder1. The specification for this computation is given in the form of a JUnit test case, Test_HigherOrderListInOrderRev, in the package brs.visitor.traverse.test. Complete the stubbed out code in HigherOrderListInOrderRev as specified. Feel free to use the results in any of the previous problems.

Insert your code for HigherOrderListInOrderRev here.
D. (15 pts) Write a BiTree visitor, called ListInOrder, that computes an IList containing the elements of the BiTree host in in-order traversal. This visitor should compute the IList directly without using concatenation. The JUnit test case is Test_ListInOrder.java in package brs.visitor.test. Complete the stubbed out code of ListInOrder.java in package brs.visitor as specified.

Insert your code for ListInOrder here.

Sept. 29, 2004
1 of 5

_1157886598.unknown

