Comp202 – Principles of Object Oriented Programming II  
EXAM #1
      

Rice University - Instructor: Wong

NAME & ID#: ___ANSWER KEY_____________


Instructions
1. This is an open-notes, open-book, open-Internet exam.

2. You have 5 hours to complete this exam.

3. You will not be penalized on trivial syntax errors, such as a missing parenthesis.  Multiple errors or errors that lead to ambiguous code will have points deducted, however.

4. In all of the questions, feel free to write additional helper methods to get the job done.

5. The emphasis is on correctness of the code, not efficiency or on simply generating the right result.

6. You are free to use any code that was given to you in the lectures and labs.

7. Zip up and upload the entire exam directory to the Owlspace drop-off site.

8. Bring a signed hardcopy of this file to class on Friday, Oct. 29, 2007.

Please write and sign the Rice Honor Pledge here:

	1
	2a
	2b
	Total

	/35 pts
	/25 pts
	/40 pts
	/100 pts


Note:  This exam refers to the solution from last year’s Exam 1, which has been included in this year’s exam materials.
1. (35 pts) Lazy Evaluation:  We will continue to build upon the lazy list evaluators that have occupied Comp202 Exam 1 students for the last several years.    This year we will exam the generalized notion of lazy evaluators that “consume” source lists to create their output.
The notion of “consuming” a source list can mean much more than simple filter operations as the prime number evaluator uses where the next value presented for the lazy list is simply an existing, though not necessary the next, value in the source list.  In that simple situation, the source list simply gets shorter ever time a new element of the resultant lazy list is requested.

In general, we can think of the source list as being transformed between each request to the lazy evaluator for the next element’s value.  That is, consider that there exists some algorithm, F, that operates on the original source list and returns a new one,

srcList0 = {a0, b0, c0, d0, …})
lazyList = {…, x, y, z, [unevaluated]}
F({a0, b0, c0, d0, …}) ( {a1, b1, c1, d1, …})
where the first element of the transformed list is the next value to be used in the lazy list.   Thus, that first element would be the next evaluated term and the new source list would be the rest of the transformed list:

lazyList = {…, x, y, z, a1, [unevaluated]}

srcList1 = {b1, c1, d1, …})

Note that the difference here between this situation and the simple filtering example is that the entire source list is considered to be transformed, rather than simply having some of its leading elements removed.
There are several key points to remember:

· There should be no restrictions on the source list.  It could be empty, infinite, finite, eager or lazy.

· There should not be any enforced restrictions on the transformed source list with regards to the original source list.  For instance, the original source list may be finite, but the transformed list may be infinite or vice versa, or the original list may be lazy but the transformed list may be entirely eager.  It may even be empty.
In terms of implementation in our LRStruct-based system, the following considerations hold:
· The source lists are LRStruct’s.

· The transformation function is thus an IAlgo executed by the source list, returning the transformed list, also a LRStruct.

· The lazy evaluator would then call the removeFront() method on the transformed list to obtain the next value for the lazy list.

· The now shortened transformed list is the new source list to be transformed to obtain the next element in the lazy list.   That is, the shortened transformed list is the source list for the next evaluator.

· The lazy evaluator would thus take a LRStruct (the source list) and an IAlgo (the transformation algorithm) in its constructor.

You are to write an ALazyEval called LazyListConsumer that will create a possibly infinite list resulting from a given repetitive transformation (an IAlgo) of a given initial source list.  The stub code for this class has been provided.  

· Note that the transformation algorithm, newSrcAlgo, takes no input parameters.

· Two example transformation algorithms have been provided: 

· LRSRunningAvg: returns the original source list with the first element replaced by the average of the first n elements of the list.   This is called a “moving average” and is a very common noise reduction technique in signal processing .  The demo GUI has been modified to include this “moving avg list” example where n is specified by the “A” input parameter and the original source list is the list being displayed when this example is selected.

· Example results, starting with the list of all integers (arithmetic list, {1, 2, 3, 4 …}):

· n = 3 ( {2, 3, 4, 5, …}

· n = 5 ( {3, 4, 5, 6, …}

· n = 4 ( {2.5, 3.5, 4.5, 5.5, …}

· LRSRemoveRandomExp:  Randomizing an infinite list of values presents some interesting challenges.  Since it is impossible to randomize the entire list at once, we have to settle for randomizing to some “depth” into the list.  Put simply, the next element taken from the source list should come, on average, from some given distance into the list.   The greater that average distance, the more mixed up the output numbers will become.  It turns out that mathematically, that average distance can be translated into a simple probability of choosing (or not choosing) a value at any given point in the list:  pnot choose=distance/(distance +1) The problem thus boils down to the same chain of coin tossing events that we discussed in class.  This randomization technique is very useful for introducing randomization into a system to wash out effects of transient spurious signals.  It is equivalent to the electrical and mechanical “ballast” techniques using capacitors and storage tanks.
· Thus all the LRSRemoveRandomExp algorithm does is to pick a random number between zero and one and compare it against the probability of not choosing that value.  If it is less than the probability, it recurs to the next element in the source list, otherwise it moves that element to the front of the source list. 

· The GUI has been modified to include “Randomized list to a given depth” where the depth distance is specified by the “A” input.

· You should notice that if you start with the list of integers, that small values of the randomization depth will produce a mixing of only nearby values but larger depths will show a mixing of a much larger number of values.   In any case, however, you should always still be able to see the general trend of the numbers in the list getting larger and larger.

Always remember to reset the displayed list back to the list of integers (or whatever you desire as the original source list) before selecting new values for the parameters for the moving average or randomization evaluators. 

Notes:

a. Think delegation always.

b. There are no if statements needed!
c. Don’t forget about the possibility that the source list may be or become empty.

d. Don’t forget about the possibility that the transformed source list may be empty.

The stub code for this section can be found in the lazyEvalCode subdirectory.
Please insert your code for LazyListConsumer.java below:
package lrs.lazyLRSEvaluators;

import lrs.*;

import fp.*;

public class LazyDiffLambdaEval extends ALazyEval

{

  private LRStruct src;

  public LazyDiffLambdaEval(LRStruct aSrc) {

    src = aSrc;

  }

  public final LRStruct nextLRS()

  {

    // STUDENT TO COMPLETE

    // Delegate to the src list

    return (LRStruct) src.execute(new IAlgo() {

      public Object emptyCase(LRStruct srcHost, Object... nu) {

        // Differential of an empty polynomial is an empty polynomial.

        return new LRStruct();

      }

      public Object nonEmptyCase(LRStruct srcHost, Object... nu) {

        // Advance the src list and make a new polynomial.

        src = srcHost.getRest();

        return makeLRS();

      }

    });

  }

  public final LRStruct makeLRS()

  {

    // STUDENT TO COMPLETE

    // Delegate to the src list.

    return (LRStruct) src.execute(new IAlgo() {

      public Object emptyCase(LRStruct srcHost, Object... nu) {

        // Differential of an empty polynomial is an empty polynomial.

        return new LRStruct();  

      }

      public Object nonEmptyCase(LRStruct srcHost, Object... nu) {

        IPowerFn pf = (IPowerFn) src.getFirst();  // get the current term

        if( 0.0 == pf.getPower()) {

          return nextLRS();  // get rid of constant term.

        }

        else {

          // Perform the differentiation and make a new lazy list.

          return makeLazyLRS ( new PowerFn(pf.getCoef()*pf.getPower(), pf.getPower()-1.0));

        }

      }

    });

  }

}

1. (65 pts total) Solving a Maze.

This is an extension of the maze solving problem from last year’s Exam 1.   In that problem, we considered a maze consisting of identical rooms all with 4 exits, labeled “North”, “East”, “South” and “West”.    Each exit is one-way, that is, you may leave through an exit to another room but there may not be a direct way back to where you came from. (Note that this maze is modified from last year to be more complete.)  

The computer science fancy words for this type of maze is “directed graph” where the rooms are called “vertices” and the arrows connecting the rooms, designating the one-way exits, are called “edges”. 
Graphs and trees are very similar in that they both have a node (vertex) of some sort and each node (vertex) has directed references to other node (vertices).   The big difference is that in a graph, there exists the possibility of loops.   That means that normal tree traversal algorithms, if run on a graph, have the possibility of endlessly recurring if a loop is encountered.

Here, one room is marked “End” and, initially, all the other rooms are marked “Unseen”.   Last year’s problem was to start at some given room and to traverse the maze (graph) until we find the room marked “End”, if it is accessible from the room where we started. 
To facilitate the marking of rooms, the rooms have been designed to hold data of the form IRoomData and all rooms have the ability to execute an IRoomAlgo visitor.    As in all tree-like structures, rooms can be either empty or non-empty.   IRoomData has the ability to execute an IRoomDataAlgo visitor and the IRoomData interface defines 3 concrete singleton host instances:  SEEN, UNSEEN and END.
This year we have added another feature to the rooms: the ability to hold an object, a “trinket”.   All non-empty rooms can hold a single ITrinket object.  Thus the INERoom interface has two new methods, getTrinket and setTrinket.    We have defined 5 concrete trinket objects:  NULL (represents the lack of a trinket), COIN, WAND, FOOD, and KEY.   These are all static singleton values in the ITrinket interface, e.g ITrinket.COIN and ITrinket.FOOD.  A corresponding visitor has been defined with 5 cases for those 5 concrete trinkets.   Please see the classes in the trinket package in the supplied code.   

You are to write an IRoomAlgo called FindTrinket that will return an IList<IRooms> that is a path, not necessarily the shortest path, in order, from the given initial host room to the first room that includes the given ITrinket object, inclusive.

For instance, if, on the maze shown above, FindTrinket is executed on Room #6 with ITrinket.FOOD as its input parameter, the returned list could be (amongst other possibilities) 

{Room #6, Room #2, Room #5, Room #3}.  (Note that the End data is ignored)
If there is no route from a given room to a room with the desired trinket, an empty list should be returned.  For instance, if one were to search for WAND in the above maze.
Visitors on Virtual States

As should be obvious, at some point in the desired algorithm, you will need to compare the trinket in a room with the given trinket to see if they are or are not the same.  Since there are 5 possible trinkets, this means that there are 25 possible outcomes for this comparison, 5 of which are matches and 20 of which are not.   But in the end, you really don’t care which trinkets are compared, only whether or not the two trinkets are equal or not.  To help us, we introduce the new concept of “calculated” or “virtual” states.  That is, if we consider the two trinkets as a monolithic system, a “dyad” in CS-speak, then we can consider them, as a unit, to have two distinct states, “equal” and “not-equal”.   In such, we can imagine the dyad executing a visitor with two cases corresponding to the “equal” and “not-equal” states.   As far as the visitor is concerned, as long as one of its two cases gets called, it thinks that the host is thus in that corresponding state.  But here, physically, that state doesn’t exist—it is a virtual state.  This concept of a virtual state is widely used in physics, chemistry and electronics. 

However, we can calculate which state the dyad is in.   Thus we can dynamically figure out which case on the visitor to call.   So what we do is to write an ITrinketAlgo visitor called TrinketEquals that one trinket executes and takes as input parameters, the other trinket and a two-case visitor.   For generalities sake, we use a Boolean visitor with “true” and “false” cases as defined by the logic.IBooleanAlgo interface. 
Since it is unclear what the “host” for the IBooleanAlgo visitor should be when the two trinkets are not equal, ITrinketAlgo also has an input parameter defined to be the host for the IBooleanAlgo visitor as well as the rest of its vararg inputs are passed along as the vararg input parameters for the IBooleanAlgo’s trueCase and falseCase calls.   Unfortunately, due to type erasure and the way that Java implements arrays, the type of those vararg parameters is restricted to Object.
A typical usage of TrinketEquals might look like this:
IList<IRoom> result = trinket1.execute(TrinketEquals.Singleton, 

   tinket2,     

   aRoom, 
   new IBooleanAlgo<IList<IRoom>, IRoom>() {

      public IList<IRoom> trueCase(IRoom host, Object…inps){

         // some code where host=aRoom, inps[0] = inp0, inps[1]=inp1, etc
      }

      public IList<IRoom> trueCase(IRoom host, Object…inps){

         // some code where host=aRoom, inps[0] = inp0, inps[1]=inp1, etc
      }

   }, 
   inp0, inp1, etc);

Thus, in terms of modeling the processing of the trinkets, we can logically consider the above to be a delegation to the trinket1-trinket2 dyad with two possible cases, trueCase and falseCase.  

The use of this virtual state visitor will simplify your modeling immensely.
a. (25 pts) Process Flow Modeling 
The first thing we need to do is to get a handle on the algorithm we will use to process the maze.    The big problem is that there are 4 possible paths out of any given room and the recursive result out any given exit may return an empty list if that path does not lead to the desired room.  

This means that our process depends on the following objects:  

· The IRoom host, which may be empty or non-empty.

· The IRoomData in the room you are in, which may be Seen, Unseen, or End.   For this algorithm, End is the same as Unseen, though it is important to restore the proper data when clearing the Seen marking.
· The ITrinket which is in any non-empty room.

· The recursive result from every exit in the room, an IList<IRoom>, which may be empty or non-empty.

One thing that last year’s solution to FindEnd did not include was the ability to clear out the Seen/Unseen markings after the algorithm is completed.   This ability is very important because if a room remains marked as Seen, then any subsequent algorithms on the maze might fail.  For instance, suppose we were using FindTrinket is a larger process to find a set of ITrinkets.  The first trinkets would be found successfully, but the lingering Seen markings would probably cause the subsequent searches to fail. 

The ability to clear the Seen markings can be implemented by changing only one line of code and adding only two short lines of code to the FindEnd solution.   It does not require the running of the ResetToUnseen algorithm!

You are to modify the solution for FindEnd from last year to create FindTrinket, 

In the space below, in textual and/or graphical form, describe the delegation process you will use to find the room containing a given ITrinket and return the path to that room.  You may use a modification of the solution for the FindEnd algorithm:

Initial delegation to the starting IRoom
a. Empty Case:  Done, no path here!  Return an empty list.

b. Non-Empty Case:   Delegate to the IRoomData.

i. End Case:  Done!  Return a one-element list with the room host in it.

ii. Seen Case:  Done, no path here!  Return an empty list. 

iii. Unseen Case:  Set the starting room host’s data to SEEN and then recur to the North exit and delegate to the resulting list.
1. Non-empty case:   Done, found path!  Return new list with starting room host and recursive result.
2. Empty case: No path in North direction, so recur on East exit and delegate to the resulting list:

a. Non-empty case:   Done, found path!  Return new list with starting room host and recursive result.

b. Empty case:  No path in East direction, so recur on South exit and delegate to the resulting list:

i. Non-empty case:   Done, found path!  Return new list with starting room host and recursive result.

ii. Empty case:  No path in South direction, so recur on West exit and delegate to the resulting list:

1. Non-empty case:   Done, found path!  Return new list with starting room host and recursive result.

2. Empty Case:  Done, no path here!  Return an empty list.

b. (40 pts) Write the code for FindTrinket.

Notes:  
· The definitions for any visitors running on the recursive result IList<IRoom> will have this form:
     MyAlgo implements IListAlgo<IRoom, IList<IRoom>, Object> {

        public IList<IRoom> emptyCase(INEList<? extends IRoom> resultHost, Object... nu){

          …

        }

        public IList<IRoom> nonEmptyCase(INEList<? extends IRoom> resultHost, Object... nu){

          …

        }

      }

That is, the algorithm works on a list of IRoom objects, returns an IList of IRooms and takes an Object as its input parameter (you may want to change the input parameter’s type to whatever suits your needs).

· Given that the result is a list of rooms in order from the start to the end, is it better to create a forward or reverse accumulation algorithm?

· If you find that you have multiple implementations of a particular visitor where one of the cases is always the same, consider defining an abstract class that defines just that invariant case.   Now all you need to do in the rest of your code is to implement whatever variant cases the abstract class leaves out.  This could greatly simplify your code.
· Since the visitors use generics to define their return types, the results of a visitor’s execution can be immediately used without casting and operations can be “chained” together, ala thing.execute(algo).execute(anotherAlgo).    This can simplify your code quite a bit.

· The supplied test code uses a randomly generated maze, so it cannot automatically check if the algorithm works.   The output is printed on the console and interactions panes, showing the maze before the FindTrinket algorithm is run, the path that was returned and the maze after the FindTrinket algorithm was run (tells you what rooms were traversed by FindTrinket).  Right clicking the console pane will enable you to clear it and thus show only the most recent test results.

· The supplied test code runs FindTrinket multiple times on the same maze, searching for different trinkets.  Be sure that Seen markings that have not been cleared have not caused it to fail.

· Whatever room was marked with End should remain so marked after FindTrinket runs!

· No if statements are needed at all for this solution!
The stub and test code can be found in the mazeSolve subdirectory of the exam download.
Please insert your code for FindTrinket.java below:
package maze.visitor;

import listFW.*;

import listFW.visitor.*;

import listFW.factory.*;

import maze.*;

public class FindEnd implements IRoomAlgo<IList<IRoom>,Object> {

  public static final FindEnd Singleton  = new FindEnd();

  private FindEnd() {}

  /**

  * Factory to use to make the path list.

  */
  private IListFactory<IRoom> fac = new CompositeListFactory<IRoom>();

  /**

   * Returns an empty list b/c there is no path through an empty room.

   */  
  public IList<IRoom> emptyCase(IEmptyRoom roomHost, Object... nu) {
    // STUDENT TO COMPLETE

    return fac.makeEmptyList();

  }

  /**

   * Returns  list of rooms that is the path to the end room starting at this room.

   * Path includes both this room and the end room.   

   * Path is empty if there is no route to the end room through this room.

   */

  public IList<IRoom> neCase(final INERoom roomHost, Object... nu) {
    // STUDENT TO COMPLETE
    return roomHost.getData().execute(new IRoomDataAlgo<IList<IRoom>, Object>() {

      public IList<IRoom> endCase(IRoomData dataHost, Object... inps) {

        return fac.makeNEList(roomHost, fac.makeEmptyList());

      }

      /**

       * Defines the invariant nonEmptyCase for processing the recursive 

       * results.

       * Helper is defined here so that roomHost is in its closure.

       */
      abstract class ResultHelper implements IListAlgo<IRoom, IList<IRoom>, Object> {

        public IList<IRoom> nonEmptyCase(INEList<? extends IRoom> resultHost, Object... nu){

          return fac.makeNEList(roomHost, resultHost);

        }

      };

      public IList<IRoom> unseenCase(IRoomData dataHost, Object... inps) {

        roomHost.setData(IRoomData.SEEN);

        return roomHost.exitNorth().execute(FindEnd.this)

          .execute(new ResultHelper() { 

          public IList<IRoom> emptyCase(IMTList<? extends IRoom> northResultHost, Object... nu) {

            return roomHost.exitEast().execute(FindEnd.this)

              .execute(new ResultHelper() {

              public IList<IRoom> emptyCase(IMTList<? extends IRoom> eastResultHost, Object... nu) {

                return roomHost.exitSouth().execute(FindEnd.this)

                  .execute(new ResultHelper() {

                  public IList<IRoom> emptyCase(IMTList<? extends IRoom> southResultHost, Object... nu) {

                    return roomHost.exitWest().execute(FindEnd.this)

                      .execute(new ResultHelper() {

                      public IList<IRoom> emptyCase(IMTList<? extends IRoom> westResultHost, Object... nu) {

                        return fac.makeEmptyList(); 

                      }

                    });

                  }

                });

              }

            });

          }

          // non-empty case is invariant, so no need to override.

        });

      }

      public IList<IRoom> seenCase(IRoomData dataHost, Object... inps) {

        return fac.makeEmptyList();

      }

    });

  }

}
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