Comp202 – Principles of Object Oriented Programming II
EXAM #3

Rice University - Instructors: Wong & Nguyen

NAME & ID#: _________________

Instructions
1. You have 5 hours to complete this exam, plus an additional 45 minutes for the extra credit problem.

2. This is an open-notes, open-book, open-Internet exam.

3. You will not be penalized on trivial syntax errors, such as a missing parenthesis. Multiple errors or errors that lead to ambiguous code will have points deducted, however.

4. In all of the questions, feel free to write additional helper methods to get the job done.

5. The emphasis is on correctness of the code, not efficiency or on simply generating the right result.

6. You are free to use any code that was given to you in the lectures and labs.

7. You are expected to use higher order functions wherever appropriate.

8. You are expected to use generics, auto-boxing and simplified for-loops wherever appropriate.

Please write and sign the Rice Honor Pledge here:

	1.a
	1.b
	1.c
	1.d
	1.e
	1.f
	2.a
	3.a
	3.b
	3.c
	Total

	/10 pts
	/10 pts
	/15 pts
	/10 pts
	/5 pts
	/5 pts

+15 e.c.
	/15 pts
	/10 pts
	/10 pts
	/10 pts
	/100 pts

+15 e.c.

1. (50 pts + 5 pts extra total) Higher order functions, and generative recursion:
A Vietnamese farmer wants to use his bicycle to transport three items to the market: a sack of corn, a goose and a fox. He is facing with a few problems:

· His bike can only carry one additional item besides himself at a time.

· He cannot leave the fox and the goose together unattended because the fox will eat the goose, nor can he leave the corn with the goose because the goose will eat the corn.

It is clear that the farmer must make multiple trips back and forth between his farm and the market in order to transport all of his items without losing any.

Your job is to write a program to find such a sequence of trips. This is essentially a graph traversal problem, but with the twist that the graph is not determined a priori. These types of problem are known as “generative recursion” problems because the graph is being generated as you go along. We will be able to run our code using RAC-based and non-RAC based traversals, though only the non-RAC depth-first will give us a nice tidy solution.

We first define the data and write a few utility functions.
Note: The testing code for what you have to write has not been totally supplied. You will need to write test classes to check your work. You will not be graded on your test cases, though it is strongly recommended that if your code does not work, that you spend the time to write some good test cases.

A. (10 pts) Set membership visitor: Write an IAlgo visitor called IsInLRS that returns a Boolean if the given Comparable object is contained at least once in the list. Your algorithm should exhibit “short-circuit” behavior, that is, if a match is found, the rest of the list is not checked. A Comparable object returns 0 for equality. Do not assume that the host list contains Comparable objects. Note that Comparable.compareTo() takes an Object as its input, not a Comparable. Use higher order functions where applicable (hint: consider using OrMapLRS).
--------------- Paste your code for IsInLRS below ---------------------------------

package lrs.visitor;

import lrs.*;

import fp.*;

import java.util.*;

/**

 * Determines if a given Comparable object is contained in the list.

 * The list does not need to contain Comparables bacause

 * comp.compareTo(listElement) is used to equality testing.

 * Exhibits "short-circuit" behavior in that if

 * a matching element is found in the list

 * the processing of the list is

 * immediately terminated and true is returned.

 * If the list is empty, false is returned.

 * The original list is unchanged.

 */

public class IsInLRS implements IAlgo {

 public static final IsInLRS Singleton = new IsInLRS();

 private IsInLRS() {}

 public Object emptyCase(LRStruct host, Object comp) {

 return false;

 }

 public Object nonEmptyCase(LRStruct host, final Object comp) {

 return host.execute(OrMapLRS.Singleton, new ILambda() {

 public Object apply(Object...xs) {

 return 0==((Comparable)comp).compareTo(xs[0]);

 }

 });

 }

}
B. (10 pts) Sub-set visitor: Write an IAlgo visitor called IsSubsetOfLRS that returns a Boolean if the elements of the host list form a subset of the elements of the given LRStruct. That is, the visitor returns true if all the elements of the host are members of the given list. Use higher order functions where applicable (hint: consider AndMapLRS).
--------------- Paste your code for IsSubsetOfLRS below -------------------------------------

package lrs.visitor;

import lrs.*;

import fp.*;

/**

 * Returns true if the host list is a subset of the

 * given (as the input parameter) list. That is,

 * returns true if every element of the host is a member

 * of the given list. Returns false otherwise.

 */

public class IsSubsetOfLRS implements IAlgo {

 public static final IsSubsetOfLRS Singleton = new IsSubsetOfLRS();

 private IsSubsetOfLRS() {}

 public Object emptyCase(LRStruct host, Object aList) {

 return true;

 }

 public Object nonEmptyCase(LRStruct host, Object aList) {

 final LRStruct otherList = (LRStruct) aList;

 return host.execute(AndMapLRS.Singleton, new ILambda() {

 public Object apply(Object...args) {

 return otherList.execute(IsInLRS.Singleton, args[0]);

 }

 });

 }

}
C. (15 pts) Representation of the state of the farmer and his items: The class farmer.State represents the state of the farmer and his items at any given point in time. Basically, State holds two LRStructs, which hold the items (“Fox”, “Corn”, “Goose”), which are Strings. One list is for the items that are with the farmer (_hereSet) , and one list holds the items at the other location (_thereSet). The farmer’s location is represented by an integer value of +1 for at the farm and -1 for at the market (_farmerLoc). This model enables the situations of the farmer at the market vs. the farmer at the farm to be treated symmetrically.
A State has the capability to generate the next possible States that could arise from it. First we will concentrate on producing all possible states, then we will write another method to narrow that set down to a set of only allowable States.
You are to write the method, makeAllNextStates() which will calculate all the possible next States. Here is an outline of what needs to be done:

· For every element in the current _hereSet, make a new State where that element has been moved to the new State’s hereSet (remember that the farmer is going with the item to the new location). (What higher order function enables you to process every element of a list?)
· The new State’s hereSet is the old State’s hereSet with the current item removed (hint: consider using FilterLRS—careful, it mutates its host!)
· The farmer’s location in the new State is the opposite of the location in the current State.

· The new State’s thereSet is the old State’s hereSet with the current item inserted. Make a copy first! The order in which the items are stored in the lists is immaterial because we will use unordered set operations on them.
· One of the possibilities is that the farmer travels alone back to the other location. Don’t forget this option!

Notes:

· Do not mutate the original _hereSet or _thereSet lists, if you wish to remove or add items be sure to either use a new list of use a copy of the original lists. Use CopyLRS to make copies of a list when needed. Make new copies for every new State!
· There are two forms of Map provided which are quite different. MapLRS uses a lambda that takes the whole list (at that point) as its input, plus another input parameter. The lambda can mutate the list as it sees fit, or may do something entirely else. The return value controls the mapping: true to continue, false to stop. MapCopyLRS takes a lambda that only takes the host list’s data as its one input. The result of processing that data is put into a new, separate list—the original is unmodified.

--------------- Paste your code for State.makeAllNextStates() below --------------------------------

 public LRStruct makeAllNextStates() {

 LRStruct next = (LRStruct)

 _hereSet.execute(
 MapCopyLRS.Singleton,

 new ILambda() {

 public Object apply(final Object ... xs) {

 return new State

 (((LRStruct)_thereSet.execute(CopyLRS.Singleton, null)).insertFront(xs[0]),

 -1*_farmerLoc,

 (LRStruct)((LRStruct)_hereSet.execute(CopyLRS.Singleton, null)).execute(
 FilterLRS.Singleton,

 new ILambda() {

 public Object apply(Object...ys) {

 return !xs[0].equals(ys[0]);

 }

 }));

 }

 });

 next.insertFront(new State((LRStruct)_thereSet.execute(CopyLRS.Singleton, null),

 -1*_farmerLoc,

 (LRStruct)_hereSet.execute(CopyLRS.Singleton, null)));

 return next;

 }
D. (10 pts) Creating a restricted set of next states: Since the farmer cannot leave the goose alone with the corn not can he leave the fox alone with the goose, we need to filter the list of all possible next states so that it only includes the valid possible states.
You will write the method State.makeOkNextStates(LRStruct okSets) which will take the output of makeAllNextStates() and reduce it to only those states whose _thereSets are elements of the given okSets. OkSets is a list of list of items, that is, a list of sets of items which are ok to be left alone: (empty, (Goose), (Fox), (Corn), (Fox, Corn)). Note that (Fox, Corn) is equivalent to (Corn, Fox), so it only one needs to be in the list, though it means that we will have to use special set equality routines to compare the lists.

Here is an outline of what needs to be done:

· You must filter the elements of makeAllNextStates() such that the elements that you keep are all elements of okSets. (What higher order function is appropriate here?) It is ok to mutate the list returned by makeAllNextStates() because it is a new list anyway.

· To see if an element is contained in okSets, use the IsInLRS you wrote. The only problem is that IsInLRS requires that the element being checked is a Comparable, but here we are checking for LRStructs being in LRStructs and an LRStruct is not a Comparable. To remedy this problem, wrap the LRStruct you wish to check for in a Comparable object whose compareTo() method you have overridden to use the SetEqualsLRS visitor to test for set equality. Remember that compareTo() returns zero for equality, not a Boolean. Return any non-zero number to indicate non-equality.
--------------- Paste your code for makeOkNextStates() below ---------------------------------

 public LRStruct makeOkNextStates(final LRStruct allOKSets) {

 return (LRStruct) makeAllNextStates().execute(
 FilterLRS.Singleton,

 new ILambda() {

 public Object apply(final Object...s) {

 return allOKSets.execute(IsInLRS.Singleton, new Comparable() {

 public int compareTo(Object aSet) {

 return (Boolean)
 ((LRStruct) aSet).execute(SetEqualsLRS.Singleton,((State)s[0])._thereSet)

 ? 0 : +1;

 }

 });

 }

 });

 }
E. (5 pts) Wrapping up the states in a vertex: Since we are fundamentally dealing with a graph, we want our states to play the role of vertices. To do so, we will wrap each state up in an IVertex–derived class called FarmerVertex.

FarmerVertex primarily holds a state, called the “_currentState”. This state defines the vertex on the graph. In addition, it holds an “end state” which is the state that defines a sink in the graph. In this problem, there is only one sink state, the state where all the items and the farmer are at the market. If the current state is the end state, this vertex should have no neighbors. The set of valid possible sets of items that can be left alone is also held (_okSets).

When a FarmerVertex is constructed, the next possible valid states are computed, but not the actual IVertex neighbors. This is because if the neighbors were calculated at this point, then their neighbors would also be calculated and then their neighbors, and so on. If there were a loop in the graph, which there is here, because the farmer can always take back the same item he just brought (this is really an undirected graph), the recursive construction would go on forever. Thus we can make the next states, but we want to lazily evaluate the neighbors. This way, the traversal algorithms will take care of any loops automatically for us. The list of next possible valid states that were calculated in the constructor are held in a field called “_nhbrs”. Since the execute method needs to know the number of neighbors, the length of the list of next valid states is calculated and stored in _nNhbrs.
You are to write the method FarmerVertex.getNhbrs() which will return a new Set<IVertex> (use HashSet<IVertex>) filled with new FarmerVertex objects made from the states held by _nextStates. That is, every state in _nextStates is to be used to make a FarmerVertex object that is stored in the resultant Set object.
· You will need to find the right higher-order function to process the list of next states.

· Do you need to worry about whether or not the current state is the end state? Why? Why not?

--------------- Paste your code for FarmerVertex.getNhbrs() below ---------------------------------
 public Set<IVertex> getNhbrs() {

 final Set<IVertex> nhbrs = new HashSet<IVertex>();

 _nextStates.execute(new MapLRS(new ILambda() {

 public Object apply(Object...args) {

 nhbrs.add(new FarmerVertex((State)((LRStruct)args[0]).getFirst(),

 _endState,

 _okSets));

 return true;

 }

 }), null);

 return nhbrs;
F. (5 pts) Putting it all together: Now that we have a real IVertex object, we can throw it into our existing graph traversal framework. In the test class Test_Farmer, the RAC-based traversals have been completed for you. The test cases simply print to the interactions pane (standard output) since the use of Sets precludes well defined assertions. The results are given as lists of string representations of states.

You will notice however, that since a RAC-based traversal is geared to hitting every vertex on a graph without a notion of “ending” somewhere, the simplistic lambdas you are given contain the sequence of states from the farm to the market, but not in a very useful form. (Note that “seen” states are printed with an “*” in front of them.)

The non-RAC depth-first traversal holds more promise however. Since this traversal is capable of traversing all possible routes to a sink vertex, we will have it calculate all possible ways the farmer can transport his items from the farm to the market. This means that the result will be a list of lists of string representations of states. A list of strings will be a path from the farm to the market.
You will fill the remainder of the code for the inductive case lambda for the non-RAC depth-first traversal (inductFn in the test_DFTravAlgo() method) You will need to:

· Loop through the Set of recursive results, each of which is a LRStruct of paths, where a path is a LRStruct of Strings.

· If a list of paths is empty, do nothing.

· If a list of paths is non-empty, take the first list of paths, insert the String representation of the current vertex (args[0]) into the path and then insert the path into the result list.
· Process the whole list of paths.

For 15 pts of extra credit (take an additional 45 minutes for this), fix the lambdas for the RAC-based traversals so that they return at least one path to from the farm to the market, with the states in order (reverse order is ok) and with no extraneous states in the result.

--------------- Paste your code for inductFn below plus any extra credit work---------------------------------
ILambda inductFn = new ILambda() {

public Object apply(final Object...args) {

// recursive result is a set of lists of paths

Set<Object> rr = (Set<Object>) args[1];

final LRStruct result = new LRStruct(); // a list of paths

// iterate through all lists of paths

for(Object listOfPaths: rr) {

((LRStruct) listOfPaths).execute(new IAlgo() {

public Object emptyCase(LRStruct host, Object nu) {

// ignore empty lists of paths.

return null;

}

public Object nonEmptyCase(LRStruct host, Object nu) {

// add this vertex onto every path.

result.insertFront(((LRStruct) host.getFirst()).insertFront(args[0].toString()));

return host.getRest().execute(this, nu); // recur thru rest of paths

}

}, null);

}

return result;

}

};

2. (15 pts) Shaker Sort: A Shaker Sort is a modified Bubble Sort (or Selection Sort, it doesn’t matter) where the lowest value of the unsorted array is split off and then the highest value is split off and then the lowest again and then the highest, and so on. The sequence below shows the splitting process where the yellow highlighted numbers are the ones that were just split apart:
3 2 5 4 1
1 3 2 5 4
1 3 2 4 5
1 2 3 4 5

1 2 3 4 5
Clearly the join process is trivial.

You can see the Shaker sort in action on the sorter demo web page: http://www.exciton.cs.rice.edu/research/SIGCSE01/Sorter/SorterApplet.html
Your task is to write the split process for ShakerSort. You may NOT use a flag of any sort where your code looks like “if even, do this, else if odd do that”. You may need to add more private fields to the class and/or helper methods. You may base your code on either BubbleSort or SelectionSort.
--------------- Paste your code for ShakerSort below ---------------------------------
package Sorter;

public class ShakerSorter extends ASorter {

 private static abstract class AState {

 public abstract int split(Object[] A, int lo, int hi);

 }

 private ShakerSorter.AState forwardState = new AState() {

 public int split(Object[] A, int lo, int hi) {

 int j = hi;

 while (lo < j) {

 if (aOrder.lt(A[j],A[j-1])) {

 Object temp = A[j];

 A[j] = A[j-1];

 A[j-1] = temp;

 }

 j--;

 }

 state = reverseState;

 return lo + 1;

 }

 };

 private ShakerSorter.AState reverseState = new AState() {

 public int split(Object[] A, int lo, int hi){

 int j = lo;

 while (j < hi) {

 if (aOrder.lt(A[j+1],A[j])) {

 Object temp = A[j];

 A[j] = A[j+1];

 A[j+1] = temp;

 }

 j++;

 }

 state = forwardState;

 return hi;

 }

 };

 private ShakerSorter.AState state = forwardState;

 /**

 * @param iCompareOp

 */

 public ShakerSorter(AOrder iCompareOp) {

 super(iCompareOp);

 }

 /**

 * Splits A[lo:hi] into A[lo:s-1] and A[s:hi] where s is the returned value of this function.

 * @param A the array A[lo:hi] to be sorted.

 * @param lo the low index of A.

 * @param hi the high index of A.

 * @return

 */

 protected int split(Object[] A, int lo, int hi) {

 return state.split(A, lo, hi);

 }

 /**

 * Joins sorted A[lo:s-1] and sorted A[s:hi] into A[lo:hi].

 * @param A A[lo:s-1] and A[s:hi] are sorted.

 * @param lo the low index of A.

 * @param s

 * @param hi the high index of A.

 */

 protected void join(Object[] A, int lo, int s, int hi){

 }

}

3. (30 pts total) Insertion and Deletion from Treaps: You are given the complete working code for the left rotation (RotateLeft) and the right rotation (RotateRight) visitors and TreapTriple, the data to be inserted into a Treap. Use them to write the following BiTree visitors.

A. (10 pts) PushDown algorithm: Write a BiTree visitor called PushDown to pushdown and remove the root element of a Treap, if any, while maintaining the Treap property, as specified in the stub code PushDown.java.

You only need to show the code for the two helpers below.

--------------- Paste your code for PushDown below ---------------------------------
package treap;

import brs.visitor.*;

import brs.*;

import java.util.*;

/**

 * Pushes the top element of a treap, if any, down to the bottom and remove it,

 * while maintaining the treap property.

 */

public class PushDown_SOL implements IVisitor {

 private Comparator<TreapTriple> _orderPriority;

 /**

 * Called by the left subtree of the tree that executes PushDown_SOL:

 * @param p the parent of right.

 * @return Boolean true

 */

 private IVisitor _pushDownHelp1 = new IVisitor() {

 public Object emptyCase (BiTree left, Object parent) {

 ((BiTree)parent).remRoot();

 return Boolean.TRUE;

 }

 // may reference _pushDownHelp2:

 public Object nonEmptyCase (BiTree left, Object parent) {

 return ((BiTree)parent).getRightSubTree().execute(_pushDownHelp2, parent);

 }

 };

 /**

 * Called by the right subtree of the tree that executes PushDown_SOL:

 * @param p the parent of right.

 * @return Boolean true

 */

 private IVisitor _pushDownHelp2 = new IVisitor() {

 /**

 * @param p the parent of right.

 * @return Boolean true

 */

 public Object emptyCase (BiTree right, Object p) {

 ((BiTree)p).remRoot();

 return Boolean.TRUE;

 }

 public Object nonEmptyCase (BiTree right, Object p) {

 BiTree p2 = (BiTree)p;

 TreapTriple rightRoot = (TreapTriple)right.getRootDat();

 TreapTriple leftRoot = (TreapTriple)p2.getLeftSubTree().getRootDat();

 if (_orderPriority.compare(rightRoot, leftRoot) < 0) {

 p2.execute(RotateLeft.Singleton, null);

 return p2.getLeftSubTree().execute(PushDown_SOL.this, null);

 }

 else {

 p2.execute(RotateRight.Singleton, null);

 return p2.getRightSubTree().execute(PushDown_SOL.this, null);

 }

 }

 };

 /**

 * Used when the items in the tree are Comparable objects.

 */

 public PushDown_SOL() {

 _orderPriority = new Comparator<TreapTriple>() {

 public int compare(TreapTriple x, TreapTriple y) {

 return x.getPriorityComparable().compareTo(y);

 }

 };

 }

 public PushDown_SOL (Comparator<TreapTriple> orderPriority) {

 _orderPriority = orderPriority;

 }

 /**

 */

 public Object emptyCase(BiTree host, Object nu) {

 return Boolean.TRUE;

 }

 /**

 */

 public Object nonEmptyCase(BiTree host, Object key) {

 return host.getLeftSubTree().execute(_pushDownHelp1, host);

 }

}

B. (10 pts) Treap deletion algorithm: Write a BiTree visitor called TreapDeleter to delete a TreapTriple from a Treap while maintaining the Treap property, as specified in the stub code TreapDeleter.java
--------------- Paste your code for TreapDeleter below ---------------------------------
package treap;

import brs.visitor.*;

import brs.*;

import java.util.*;

/**

 * Inserts an Object into the host maintaining the host's binary search tree

 * property via a given Comparator.

 * Duplication is not allowed: replaces old data object with the new one.

 * @author Dung X. Nguyen - Copyright 2003 - All rights reserved.

 */

public class TreapDeleter_SOL implements IVisitor {

 private Comparator<TreapTriple> _orderKey;

 private Comparator<TreapTriple> _orderPriority;

 private IVisitor _pushDown = NoOpVisitor.Singleton;

 /**

 * Used when the items in the tree are Comparable objects.

 */

 public TreapDeleter_SOL() {

 _orderKey = new Comparator<TreapTriple>() {

 public int compare(TreapTriple x, TreapTriple y) {

 return x.getKeyComparable().compareTo(y);

 }

 };

 _orderPriority = new Comparator<TreapTriple>() {

 public int compare(TreapTriple x, TreapTriple y) {

 return x.getPriorityComparable().compareTo(y);

 }

 };

 _pushDown = new PushDown_SOL();

 }

 public TreapDeleter_SOL (Comparator<TreapTriple> orderKey,

 Comparator<TreapTriple> orderPriority) {

 _orderKey = orderKey;

 _orderPriority = orderPriority;

 _pushDown = new PushDown_SOL(_orderPriority);

 }

 /**

 */

 public Object emptyCase(BiTree host, Object nu) {

 return Boolean.FALSE;

 }

 /**

 */

 public Object nonEmptyCase(BiTree host, Object key) {

 TreapTriple k = (TreapTriple) key;

 TreapTriple root = (TreapTriple) host.getRootDat();

 if (_orderKey.compare(k, root) < 0) {

 return host.getLeftSubTree().execute(this, key);

 }

 if (_orderKey.compare(k, root) > 0) {

 return host.getRightSubTree().execute(this, key);

 }

 // At this point: input is equal to root.

 return host.execute(_pushDown, null);

 }

}

C. (10 pts) Treap insertion algorithm: Write a BiTree visitor called TreapInserter to insert a TreapTriple into a Treap while maintaining the Treap property, as specified in the stub code TreapInserter.java. (Hint: use the deletion algorithm!)
--------------- Paste your code for TreapInserter below ---------------------------------
package treap;

import brs.visitor.*;

import brs.*;

import java.util.*;

import fp.*;

/**

 * Inserts an Object into the host maintaining the host's binary search tree

 * property via a given Comparator.

 * Duplication is not allowed: replaces old data object with the new one.

 * @author Dung X. Nguyen - Copyright 2003 - All rights reserved.

 */

public class TreapInserter_SOL implements IVisitor {

 private Comparator<TreapTriple> _orderKey;

 private Comparator<TreapTriple> _orderPriority;

 private IVisitor _remove;

 private IVisitor _insertHelp = new IVisitor() {

 /**

 * Returns the host tree where the input is inserted as the root.

 * @param host an empty binary tree, which obviously satisfies BSTP.

 * @param input new data to be inserted.

 * @return BiTree host, which is no longer empty.

 */

 public Object emptyCase(BiTree host, Object input) {

 host.insertRoot (input);

 return host;

 }

 /**

 * Inserts the input object, assuming the input is NOT in the host tree.

 * @param host non-empty and satisfies Treap property.

 * @param input new data to be inserted.

 * @return BiTree the host tree.

 */

 public Object nonEmptyCase(BiTree host, Object input) {

 TreapTriple inp = (TreapTriple) input;

 TreapTriple root = (TreapTriple) host.getRootDat();

 if (_orderKey.compare(inp, root) < 0) {

 host.getLeftSubTree().execute(this, input);

 if (_orderPriority.compare(root, (TreapTriple)host.getLeftSubTree().getRootDat()) > 0) {

 host.execute(RotateRight.Singleton, null);

 }

 }

 else if (_orderKey.compare(inp, root) > 0) {

 host.getRightSubTree().execute(this, input);

 if (_orderPriority.compare(root, (TreapTriple) host.getRightSubTree().getRootDat()) > 0) {

 host.execute(RotateLeft.Singleton, null);

 }

 }

 else {

 host.setRootDat(inp);

 }

 return host;

 }

 };

 /**

 * Used when the items in the tree are Comparable objects.

 */

 public TreapInserter_SOL() {

 _orderKey = new Comparator<TreapTriple>() {

 public int compare(TreapTriple x, TreapTriple y) {

 return x.getKeyComparable().compareTo(y);

 }

 };

 _orderPriority = new Comparator<TreapTriple>() {

 public int compare(TreapTriple x, TreapTriple y) {

 return x.getPriorityComparable().compareTo(y);

 }

 };

 _remove = new TreapDeleter_SOL();

 }

 public TreapInserter_SOL (Comparator<TreapTriple> orderKey,

 Comparator<TreapTriple> orderPriority) {

 _orderKey = orderKey;

 _orderPriority = orderPriority;

 _remove = new TreapDeleter_SOL(_orderKey, _orderPriority);

 }

 /**

 * Returns the host tree where the input is inserted as the root.

 * @param host an empty binary tree, which obviously satisfies BSTP.

 * @param input new data to be inserted.

 * @return BiTree host, which is no longer empty.

 */

 public Object emptyCase(BiTree host, Object input) {

 host.insertRoot (input);

 return host;

 }

 /**

 * If the input is equal to host.getRootDat) then the old root data is

 * replaced by input. Equality here is implicitly defined by the total

 * orderKeying represented by the Comparator _orderKey.

 * @param host non-empty and satisfies BSTP.

 * @param input new data to be inserted.

 * @return BiTree the host tree.

 */

 public Object nonEmptyCase(BiTree host, Object input) {

 host.execute(_remove, input);

 return host.execute(_insertHelp, input);

 }

}

Dec. 3, 2004
8 of 14

