Comp202 – Principles of Object Oriented Programming II
EXAM #3

Rice University - Instructors: Wong & Nguyen

NAME & ID#: _________________

Instructions
1. This is an open-notes, open-book, open-Internet exam.

2. You will not be penalized on trivial syntax errors, such as a missing parenthesis. Multiple errors or errors that lead to ambiguous code will have points deducted, however.

3. In all of the questions, feel free to write additional helper methods to get the job done.

4. The emphasis is on correctness of the code, not efficiency or on simply generating the right result.

5. You are free to use any code that was given to you in the lectures and labs.

6. You have 5 hours to complete the exam once you have begun.

Please write and sign the Rice Honor Pledge here:

	1.A
	1.B
	1.D
	1.D.I
	1.D.II
	2.A
	2.B
	2.C
	2.D
	2.E
	Total

	/20 pts
	/15pts
	/10 pts
	/10 pts

extra
	/5 pts

extra
	/5 pts
	/5 pts
	/5 pts
	/5 pts
	/5 pts
	/100 pts

+ 15 pts extra

	3.A
	3.B
	3.C
	
	
	
	
	
	
	
	

	/10 pts
	/10 pts
	/10 pts
	
	
	
	
	
	
	
	

1. (35 pts total) Fixing the Koch curve code.
In the object model of a Koch curve, a Koch object uses a state pattern to describe its base and inductive cases. The inductive case holds an LRStruct or similar data structure to hold the set of child Koch curves.
We have provided an implementation of the Koch curve system that utilizes visitors (IKochVisitor) to affect the painting and growing processes. This enables the system to have dynamically modifiable painting algorithms and thus can handle regular Koch curves, tree fractals and other types of fractals simultaneously.
Note that the supplied code is fully generified for maximum type-safety.

To give the visitor access to the child curves contained in an inductive state Koch curve, an accessor method called getChildren() is provided. If called on a base state Koch curve, an exception is thrown. This is essentially the architecture that has been used by every visitor-based Koch curve implementation we have ever seen and the supplied code demonstrates that it does produce the desired functionality.
There’s a huge problem here though. The accessor method exposes the internal structure of the Koch curve. It allows an external agent to see and manipulate the internal structure of a Koch object as well as presenting an unnecessary ordering of the child curves.
SO LET”S FIX IT!! (
In particular, you need to provide the ability to for an external algorithm to traverse the set of child Koch curves without ever knowing anything about the data structure that holds them. That is, you need to encapsulate the recursive processing of the internal data structure.

Your task is to modify the supplied Koch curve code to
A. (20 pts) Add a method to the Koch class and any other necessary classes to encapsulate the processing of all the child Koch curves.

· Creating a method that simply returns a data structure filled with the child Koch curves and requiring the client algorithm to traverse it on its own is not allowed.

· Assume that you will always want to process all the child Koch curves.

· You may need to also create supporting classes and/or interfaces.

· Hint: Think higher-order functions.

· There are at least two ways to solve this problem.

B. (15 pts) Modify the GrowVisitor class to use your new encapsulating method and not to use the getChildren() method.
C. (10 pts) Modify the CountVisitor class to use your new encapsulating method and not to use the getChildren() method.
· Depending on how you implemented your encapsulating method, you may find that you need to modify the value of a necessarily final variable. To do so, you might want to use the trick of using a final one-element array. The array itself is final but its contents are not, so you can modify its contents (element #0) while the variable, the array itself, is final.

D. Extra credit: Eliminate all usages of the getChildren() method completely from everywhere in the Koch curve code:
I. (10 pts) Modify the painting visitors to eliminate the call to the getChildren() method.

II. (5 pts) Modify the FractalFactory class to eliminate the call to the getChildren() method.

· This implementation of IFactory uses a prototype Koch curve rather than a set of prototype points.

· The factory replicates the prototype Koch curve affine transformed (rotated+resized+translated) to the given end points. It does this by traversing the prototype Koch curve using the IKochVisitor called xfmVisitor which returns an LRStruct filled with the new child Koch curves.

III. Do not attempt these extra credit problems until AFTER you have completed the rest of the exam. You may then take an additional 45 minutes for the extra credit problems.

Notes:

· While your implementation should use generics in a manner consistent with the supplied code, not using generics will result in less than a 10% penalty.
· Your modified code should retain all the supplied code’s functionality.

· Done properly, your modified code should actually be shorter than the supplied code – Why?

The supplied code is in the Koch folder, including an executable JAR file that demonstrates the supplied code.
Copy any code you modify or add in the above sections into the space below:

2. (25 pts total) Heap-based Priority Queue (RAC):
Recall the Restricted Access Container (RAC) discussion from last semester:

http://www.owlnet.rice.edu/~comp201/05-spring/lectures/lec31/
What we did there was to implement RAC using LRStruct. In particular, for priority queues, we used a sorted LRStruct with a InsertInOrder visitor as insertion strategy to create a priority queue that always returns the elements in order of their “priority”:

http://www.owlnet.rice.edu/~comp201/05-spring/lectures/lec31/priority/
The LRStruct-based priority queue is represented by the following classes:

· ALRSRACFactory – abstractly represents a generic LRStruct-based IRACFactory.

· LRSRAContainer – a nested class of ALRSRACFactory that represents a LRStruct-based RAC.

· PQComparatorRACFactory – represents a IRACFactory that makes LRStruct-based priority queues that use a Comparator to determine the priority ordering of the elements.
We will mirror this structure to build a heap-based priority queue that uses an array-based RAC. See this semester’s lecture on heaps: http://www.owlnet.rice.edu/~comp202/05-fall/lectures/lec37/. Note that supplied Heapifier code has been modified from the lecture code to allow it to use a Comparator to determine the ordering.
The heap-based priority queue is thus represented by the following classes:

· AArrayRACFactory – abstractly represents a generic array-based IRACFactory.

· AArrayContainer – a nested class of AArrayRACFactory that represents an array-based RAC.

· ArrayPQueueFactory – represents a IRACFactory that makes array-based based priority queues that use a Comparator determine the priority ordering of the elements by creating a heap structure in the array.

Your task is to fill in the following missing method bodies in the above implementation:
Part A: (5 pts) ArrayPQueueFactory.makeRAC(): anonymous inner class AArrayContainer.get()
This method returns the element with the highest priority as determined the Comparator (i.e. the “smallest” element). An IndexOutOfBoundsException should be thrown if called on an empty RAC.
This is essentially the same as the process used to remove the extrema element (the “smallest” as defined by the Comparator) in heap sort:

1. The top element of the heap is removed,

2. The last element moved to the first,
3. The heap is shortened,

4. The new top element is sifted down the heap to re-establish the heap structure.
5. The original top element is returned.

Part B: (5 pts) ArrayPQueueFactory.makeRAC(): anonymous inner class AArrayContainer.put()

This method inserts a new element into the RAC. An IndexOutOfBoundsException should be thrown if called on a full RAC.

To insert a new value into a heap we need to do the following:
1. The new value is put at the end of the heap,

2. The heap is lengthened,

3. The value is sifted up the heap to re-establish the heap structure.

A mini-review of the sift-up process:

Suppose we have an array that is a heap. If we add an element to the end of the array, the heap property may be broken because the new element may be smaller than its ancestors in the heap tree. To re-establish the heap property, we repeatedly exchange it with its parent until it is no longer smaller than its parent. This process is called "sift-up" and is done via a while loop as shown in the siftUp method of the Heapifier.
Copy your code into the space provided at the end of this problem.
Part C: (5 pts) ArrayPQueueFactory.makeRAC(): anonymous inner class AArrayContainer.peek()

This method simply returns the element with the highest priority without removing it from the heap. An IndexOutOfBoundsException should be thrown if called on an empty RAC.
Copy your code into the space provided at the end of this problem.

Part D: (5 pts) AArrayRACFactory. AArrayContainer.elements()
This method returns the elements in the RAC’s array, not including the unused elements of the array in the RAC. An empty RAC should return an empty list. The order of the elements in the returned IList is the same as the order in the array, starting at index 0. Which way do you need to process the array to achieve this?

Copy your code into the space provided at the end of this problem.

Part E: (5 pts) In words below, briefly compare the put() and get() performance between the LRStruct-based and heap-based priority queues.
Please write your short answer here:

The supplied code is in the Heaps folder, including test code.

Please copy the ArrayPQueueFactory.java and AArrayRACFactory.java files into the space below:

3. (30 pts total) Parsing
You are to complete writing a recursive descent parser to parse the following LL(1) grammar.

S ::= X Y
X ::= A | C
A ::= a X
C ::= c
Y ::= B | X
B ::= b Y

In the above a, b, c are tokens. This is the grammar that was given in exam #2. For your convenience, the code for the tokens, their visitor interfaces, their tokenizer, the factories for parsing S, X and A, and a simple GUI application to test the parser have been provided.
Here is the UML class diagram for the grammar rules.

[image: image1.png]
Here is the UML class diagram for the corresponding factories.

[image: image2.png]
A. (10 pts) Write the code for CFact.

Please copy the CFact.java file into the space below:

B. (10 pts) Write the code for YFact.

Please copy the YFact.java file into the space below:

C. (10 pts) Write the code for BFact.

Please copy the BFact.java file into the space below:

Nov. 9, 2005
7 of 7

