Comp202 – Principles of Object Oriented Programming II  
EXAM #3
      

Rice University - Instructor: Wong

NAME & ID#: ______________________________


Instructions
1. This is an open-notes, open-book, open-Internet exam.

2. You have 6 hours to complete this exam.  READ THE QUESTIONS CAREFULLY AND COMPLETELY!
3. You will not be penalized on trivial syntax errors, such as a missing parenthesis.  Multiple errors or errors that lead to ambiguous code will have points deducted, however.

4. In all of the questions, feel free to write additional helper methods to get the job done.

5. The emphasis is on correctness of the code, not efficiency or on simply generating the right result.

6. You are free to use any code that was given to you in the lectures and labs.

7. Zip up and upload the entire exam directory to the Owlspace drop-off site.

8. Bring a signed hardcopy of this file to Dr. Wong’s office by 11:59 PM Wed, Dec. 12, 2007.  Slide it under the door or put it in his mailbox if no one is around.
Please write and sign the Rice Honor Pledge here:

	1.A
	1.B.i
	1.B.ii
	1.C.i
	1.C.ii
	2.A
	2.B.i
	2.B.ii
	2.B.iii
	2.B.iv
	Total

	/15 pts
	/10 pts
	/10 pts
	/5 pts
	/15 pts
	/20 pts
	/5 pts
	/10 pts
	/5 pts
	/5 pts
	/100 pts


READ ALL THE DISCUSSIONS AND INSTRUCTIONS FULLY AND CAREFULLY!!
1)  (55 pts total)  Parsing – pushing the envelope!  
In class ( See http://www.owlnet.rice.edu/~comp202/07-fall/lectures/lec28/), we discussed out how extended visitors can be used to create a parsing architecture where the conversion from a grammar in BNF to factories that can create a visitor to parse that grammar lies only in the instantiation of a few different types of invariant factories.  The difference between grammars lay only in the order in which the factories were strung together as they were being instantiated.   This casts the entire parsing process in a new light and opens many new possibilities.  

Note:  This problem constitutes unpublished research work that was just performed explicitly for this exam!  You have reached the forefront of OOP!  (
(This research project is called “YAK” which stands for “Yet Another Kooprey”, where Kooprey was a system built by Rice graduate student Mathias Ricken to parse BNF and automatically generate parsing code in the form of Java files, using our older recursive descent parsing system.  A Kouprey is a Cambodian ox that is related to the Gnu and Yak. But YAK is also a play on YACC, “Yet Another Compiler Compiler”, which is the Unix parser generator utility.)  
In particular, we have to ask the question, if everything is taking place at run-time, couldn’t we create a system that could dynamically create a parser, given the BNF for the grammar?  After all, isn’t BNF a language and thus described by a grammar?  That is, what if we could parse BNF itself? 
If we can parse BNF itself, we could then take the parse tree that was created, analyze it and use that information to instantiate the parser for the grammar whose BNF we originally parsed!

A) (10 pts)  Parsing BNF 
To parse BNF, we need to start with a grammar for BNF.   Here’s the BNF for BNF:

S   ::= D | S1

S1  ::= lf S

D   ::=  WordToken "::=" E L

L   ::=  L2 | Empty

L2  ::=  lf  L3

L3  ::=  L | D

E   ::=  T E1

E1  ::=  Empty | E1a

E1a ::=  "|" E

T   ::= T1 T2

T1  ::= WordToken| QuotedStringToken

T2  ::= Empty | T

Above, “lf” means linefeed since, unlike the examples from class, we will need to parse multiple lines of input here.  The “QuotedStringToken” is necessary to distinguish between elements of a grammar vs. the elements of the BNF describing that grammar.  Note, for instance, the quoted “|” on the 9’th line of the grammar above, where we need to distinguish between the “OR” symbol in the grammar being described (the quoted “|”) from the “OR” symbol in this BNF description (the unquoted “|”).  Likewise we see the same issue for the assignment operator (“::=”).
One of the problems in processing any grammar is the presence of recursive loops in the definition.  There are lots of different ways to detect loops but here, we will use a simple technique that, while potentially inefficient, is guaranteed to work:
The thing to note about loops in grammars is that fundamentally they can only ever involve non-terminal symbols (duh, right—“terminal” symbols terminate by definition!)  So, since in general, all non-terminal symbols are suspect, what we will do is to first detect all the non-terminals in a grammar and then immediately create proxies for all of them.   Then when we encountered a non-terminal while processing the right-hand side of any line of grammar (the left-hand side is the definition of a non-terminal), we simply always use the proxy.  After all the non-terminals have been defined, we simply close all potential loops by setting the all the proxies.   It may run a tad slower because we put proxies in places we didn’t have to, but it’s guaranteed to properly close all loops, which is a nice thing.
In general, the set of terminal symbols are simply the compliment of the set of non-terminal symbols, that is, if a symbol isn’t a non-terminal symbol then it is a terminal symbol.  Here, since we know the grammar a priori, we can identify the terminal symbols manually:  lf, assignment (quoted “::=”), OR (quoted “|”), WordToken, QuotedStringToken, and Empty.
Here’s our plan of attack:

1. Create ITokVisitorFact instances of TerminalSymbolFact for all the terminal symbols.  Note that for TerminalSymbolFact, the specified name in the constructor is given as a String, so for lf, the name is “lf”, for OR the name is “|”, and for assignment, the name is “::=”.   The Empty token has its own factory class, MTSymbolFact whose constructor only takes the tokenizer as an input.

2. Create ProxyFact instances for all the non-terminal symbols, i.e all symbols appearing on the left=hand side of the above grammar:  S, S1, D, L, L2, L3, E, E1, E1a, T, T1, T2.   It should be noted that S1, L2, L3, E1, E1a, T1 and T2 aren’t involved in loops, so it is actually unnecessary to make proxies for them.  That is, when you encounter these symbols, you can simply make them as per their definitions right where they are being used.  
3. Create ITokVisitorFact instances for all the non-terminal symbols that have proxies.   These will be either sequence or combination definitions.  You can use either the binary, 2-symbol forms (SequenceFact or CombinationFact) or the unlimited-symbol, vararg input forms (MultiSequenceFact or MultiCombinationFact).  The latter set is universally useful as it can be used wherever the former set can be used as well.  Remember that these factories take factories in their constructors, so you will need to either supply the terminal symbol factories or the proxy factories or if the required factory is for a symbol not involved in a loop, the direct instantiation of that factory in terms of other factories.   See the rest of the supplied code for examples of how to instantiate parsing visitor factories.
4. Now that all the factories for the non-terminals have been instantiated, you can now close all the loops by calling the setFact method on all the proxies passing in the appropriate non-terminal factory.

5. Return the factory for the start symbol, the S symbol above.

You are to complete the code for the RDPFrame.makeBNFParser method (near the bottom of the file) that will parse a file containing BNF.
Examples of how to instantiate parser visitor factories can be seen in RDPFrame.makeOrigParser and RDPFrame.makeXMLParser.

To run the demo,
· The left hand text field is the name of the first file to be parsed.   

· The "Parse Orig" button will parse a file as per a simple, hardwired grammar. The grammar that is used is described in bnf1.txt and equivalently, in bnf2.txt.

· The test files inp1.txt, inp2.txt, inp3.txt and input1.txt files contain valid grammar examples.

· The test files bad1.txt, bad2.txt and bad3.txt contain invalid grammar examples.

·  The "Parse XML" button will parse XML files as per a hardwired grammar.  The input files are labeled with "xml".   The grammar for the xml is in bnfxml1.txt.

· Valid grammar examples can be found in the files xml0.txt, xml1.txt, xml2.txt, xml3.txt, xml4.txt and xml5.txt.

· Invalid grammar examples can be found in the files badxml1.txt, badxml2.txt and badxml3.txt
· The "Check XML" button will run a visitor on the resultant parse tree to check that all tags are matching.  Works only on XML files obviously.
· Files that have a valid grammar but whose tags do not match are incorrect_xml0.txt, incorrect_xml1.txt, incorrect_xml2.txt and incorrect_xml4.txt
·  The "Parse BNF" will parse a BNF grammar file as per your hardwired grammar.  The grammar used is given in bnfbnf1.txt.  The files that can be parsed are bnf1.txt, bnf2.txt, bnfxml1.txt and bnfbnf1.txt.  That is, you should be able to parse the grammars associated with the test grammar, the XML grammar and the BNF grammar itself.
· The “Parse BNF” will print out the parser factory for the BNF grammar followed by the parsed input file.  It should look the same as the text in the BNF file, even though the screen is actually showing the String representation (toString) of the parse tree (the IGrammarSymbol for the start symbol)

· We will work on the functionality of the rest of the buttons in the next section.

You can test your functionality by trying to parse the following BNF files:  bnf1.txt, bnf2.txt, bnfxml1.txt and bnfbnf1.txt

The last file is the above BNF—your code should be able to parse its own BNF!

Insert your code for the RDPFrame.makeBNFParser method below:

B) (20 pts total)  Finding all the non-terminals
At this point, we are now switching to processing the parse tree that was produced by the parsing of the BNF.   The parsing produces an IGrammarSymbol object corresponding to the start symbol.   From class we saw that there are only a few types of grammar symbols:

· MTSymbol – represents the empty symbol.  Executes IGramSymVisitor visitors with the case index = “MTSymbol”.

· TerminalSymbol – represents a terminal symbol.  Executes IGramSymVisitor visitors with the case index = name of the terminal symbol.

· SequenceSymbol – represents a binary sequence of symbols.  Has two methods, getSymbol1() and getSymbol2() for retrieving the first and second symbols respectively.  The MultiSequenceFact produces a parsing visitor that creates a string of SequenceSymbols to represent a sequence longer than 2 symbols (i.e. the second symbol is another SequenceSymbol).  Executes IGramSymVisitor visitors with the case index = name of the sequence symbol.

It should be noted that IGrammarSymbol can execute two different types of visitors, the IGramSymVisitor and the IGramTypeVisitor.  In this problem we will only be using the IGramSymVisitor as described above.  The IGramTypeVisitor is not an extended visitor implementation because it only has 3 cases, one for each of the above types of grammar symbols.  It is used in situation where only the type of the grammar symbol is important, not its actual value.  For instance, the visitors to check for matching tags in the parsed XML are written entirely using IGramTypeVisitors.  The execute method of IGrammarSymbol is two different signatures so that it appears to accept either visitor and process it appropriately.
To find all the non-terminals in an expression, we have to walk through the grammar to find all the symbols on the left-hand side of each expression.   Luckily, each line of a BNF grammar is expressed in a single symbol, “D”, in our BNF of BNF.   Thus the problem reduces down to simply recording the first symbol in the D sequence for all D symbols encountered in the parse tree.
We will be writing the visitor, FindNonTerminalsAlgo by dividing the work into several pieces:

1.B.i (10 pts) The constructor of FindNonTerminalsAlgo, 

Here we need to install the main processing commands for the visitor using the addCmd method, which associates an index value (a String here) with a particular command (a IGramSymVisitorCmd here):

1. First, we need to find the first D symbol.  The start symbol, S, is a combination of D and S1 (that is, S is either D or S1), so we need to take into account the fact that we make first encounter an S1 symbol. 
a. S1 is just a sequence of a lf followed by an S, so to process an S1, we simply add a command that associated with the “S1” index value (a String).  This command casts its host to SequenceSymbol (the host is typed to the superclass IGrammarSymbol) and then simply recurs the entire algorithm on the second symbol of the sequence, since the FindNonTerminalsAlgo is the algorithm to process the start symbol, S.
To create a command that returns the proper Map object, use this template:

new IGramSymVisitorCmd<Map<String, IGrammarSymbol>,Object>() {

      public Map<String, IGrammarSymbol> apply(String idx, IGrammarSymbol host, Object... inps) {

        // your code here
      }

    }
b. To take care of the ability to handle a D symbol, we must remember that S is a combination, that is, it must combine the abilities of an S1 and D processing algorithms.  We will break out the coding of the D symbol to its own section, so assume we have a variable called dAlgo that is a visitor to process a D symbol.  I have added a pair of convenience methods to the extended visitors called getCmds and setCmds that are accessors to  the set of commands in an extended visitor.  getCmds actually returns a Set<Map.Entry<I,IExtVisitorCmd<R, I, P, H>>> which is a set of key-value pairs of the index and associated commands.   setCmds takes this same structure as its input so the two methods can be used to do a wholesale transfer of commands from one visitor to another.   That’s exactly what we need here because to combine the abilities of a D processing visitor with the FindNonTerminalsAlgo visitor, what we need to do is to install all the commands in the dAlgo visitor into the FindNonTerminalsAlgo visitor.  That’s a lot of explanation of one very short line of code!  (But remember this, because we will do more of this later.)
1.B.ii (10 pts) The dAlgo visitor
The skeleton of the dAlgo visitor has been included, so we need only concentrate on what its one command does.  
· The first thing to note is that a D symbol is sequence, whose first symbol is the non-terminal symbol we are looking for!  Get the first symbol from the sequence and save it in the Map object that we will return, which is a field called “return”.  The key value to use is the string representation of the symbol you are saving (toString), which is the name of the token associated with that symbol.   This is not the same as the name of the symbol.

· The rest of the lines of the grammar are buried in the L symbol at the end of the D symbol’s sequence.  The L symbol is recursively defined to include the D symbol.   You can either manually get that symbol from the sequence of sequences by repeatedly calling getSymbol2(), or you can use the little utility method provided called getNthInSequence which will return you whatever symbol you want from a sequence.  Here, we want n=3. Since the result depends on L, simply delegate to it using the visitor referenced by the lAlgo field.
The lAlgo visitor is provided.
At this point the “Check BNF” button in the demo will partially work.  Go to the checkBNFBtn_actionPerformed method at the bottom of the RDPFrame file and comment out the second half of that method, as indicated.
· First parse a BNF grammar file as was done in the previous section.   The demo will save the resultant parse tree.

· When you click on “Check BNF” a listing of the non-terminals found in the parsed BNF file should appear in the output text area.
Copy your code for FindNonTerminalsAlgo.dAlgo here
C) (20 pts total) Creating parser factories from a parse tree
It is beyond the scope of this exam to develop the entire MakeParserFactAlgo parser generator algorithm, so we will focus on some key portions of it.   Fundamentally, the algorithm must walk through the BNF grammar and identify the rules of the grammar and then instantiate either a sequence or combination factory for to parse that rule.  This algorithm assumes that all the non-terminals are already known, so it takes the Map of Strings to IGrammarSymbols that FindNonTerminalsAlgo produces, as an input parameter.

Luckily, our BNF of BNF grammar isolates a rule in the D symbol.  The first symbol in the D sequence is the non-terminal symbol that the rule defines, so its name is the name of the factory being made. The 3rd symbol in the sequence is the E symbol, which completely encapsulates the actual rule.  The final L symbol just encapsulates the line feeds that lead up to and including the next rule.  
An E symbol is a T symbol followed by an E1 symbol.  The T symbol encapsulates a sequence, so we know that if we are processing a T symbol, we are constructing a sequence factory. 

An E1 symbol is the OR operator (“|”) followed by another E symbol.  Thus if we find ourselves processing an E1 symbol, we know that we need to make a combination factory the combines the previous E symbol with the following E symbol.  

If we encounter a symbol that is not a non-terminal, then it must either be a terminal symbol or an Empty symbol.  In any case, we can easily make the corresponding parser visitor factory.  This determination only takes place inside the processing of a T symbol.
Let’s break this problem down into smaller pieces as before.
1.C.i (5  pts) Constructor of MakeParserFactAlgo
As in the FindNonTerminalsAlgo, the first thing that this algorithm must do is deal with is the D | S1 combination.   That means the code here will be exactly the same as in FindNonTerminalsAlgo, except for one addition:   As mentioned before, the safe method of insuring that all loops in the grammar are properly closed, we need to make proxies for all the non-terminal symbols.   The Map object given as the input parameter is a mapping from a String description to an IGrammarSymbol, so we need to make ProxyFact instances corresponding to all the String descriptions in the Map.  In order to store all this information, another Map object is in order, which is a field called “proxies”.  One can obtain a Set<String> of the keys in the non-terminals Map object through its keySet() method.  So all that is needed is to loop over that set and store each key with a corresponding new instance of ProxyFact in the proxies Map. 
Copy the code for the MakeParserFactAlgo constructor here
1.C.ii (15 pts) The dAlgo visitor

Once again, the D symbol is the main focus.  There are a number of things to do here:

1. Get a reference to the symbol that this D symbol is defining (since the D symbol is a grammar rule). 
a. This symbol is the WordToken which is the first symbol in the sequence.  This symbol will be one of the non-terminal symbols that were found earlier by FindNonTerminalsAlgo and hence is one of the symbols that has a proxy associated with it.

b. We will need the String representation of this symbol later. 
c. Remember that the host, though typed to IGrammarSymbol, is really a SequenceSymbol because it is the D symbol. 

2. Get a reference to the E symbol that is the 3rd symbol in the D sequence (i.e. n=2). Remember that the getNthInSequence method that this class also provides, returns the SequenceSymbol for any request that is not at the end of the sequence.  The desired symbol is thus the first symbol of the returned sequence.    
a. The E symbol is the actual definition of the corresponding to the non-terminal symbol found in section 1 above.  That is, the processing of the E symbol will return the factory that we want to associate with the symbol found in section 1.  
b. Thus we want to first delegate to another visitor, eAlgo, to process the E symbol and return its factory.

c. Now that we have the factory for E symbol, we can close any loops associated with it.  We do so by retrieving the proxy associated with the String representation of the non-terminal symbol found in section 1 above.  We then call the proxy’s setFact method to close the loop. 

d. The factory that processes E, is in fact, the return value of processing D, and thus the return value for the entire MakeParserFactAlgo.
3. But before the visitor returns, the L symbol must be processed, just as in FindNonTerminalsAlgo.  Do we need the return value from processing the L symbol?  Will all the factories created from processing the rest of the rules in the grammar be lost?  That question is left up to you.
The processing the E symbol and subsequently the T symbol are fairly involved, but follow essentially the same lines as we done so far.  Their code has been provided.  The interesting points to notice about eAlgo and tAlgo are

· Since T represents a sequence, tAlgo always returns a SequenceFact. 

· Since E is a T followed by either an empty or an E1a, then E is a sequence factory if we have T-Empty, but a combination factory if we have T-E1a since E1a represents the OR symbol followed by an E.

· eAlgo thus uses a forward accumulation process to delegate to the next symbol, either the Empty or E1a to determine whether to return a sequence factory (i.e. the result of processing T) or a combination factory (the combination of T and the subsequent E in the E1a).

It should be no surprise that the lAlgo in MakeParserFactAlgo is exactly the same as the lAlgo in FindNonTerminalsAlgo.

At this point the demo should be fully operational. Be sure to uncomment the section in the RDPFrame.checkBNFBtn_actionPerformed method that was commented out in problem 1.B.
For the following, refer to the demo instructions in Problem 1.A to find what files are associated with what grammars.

· In the left-hand text field, enter a file containing the grammar you wish to parse.
· Click the “Parse BNF” file to create the parse tree for that grammar.
· In the right-hand text field enter the name of a file containing text corresponding to the grammar file for which you created the parse tree.
· In the drop list, select the tokenizer corresponding to the grammar you parsed:  Tokenizer1 for bnf1.txt and bnf2.txt, XMLTokenizer for bnfxml1.txt and BNFTokenizer for bnfbnf1.txt. 
·  Click the “Check BNF” button
· First, the list of non-terminal symbols should appear
· Then a printout of the parser factory that was generated.  Note that some proxies may show null for their proxied symbol because their toString methods are being run before the loops are closed.
· The result of parsing the input file will then be shown. 
· The effect of choosing the bnf1.txt or bnf2.txt grammars and any of the corresponding test files should be the same as putting those same test files in the left-hand text field and clicking the “Parse Orginial” button.   That is, you can dynamically create the same parser as is hardwired for the “Parse Original” button.
· Likewise, the same can be shown for the XML grammar and test files.
· Note however that your system will be unable to dynamically generate a parser for BNF itself.  That is, typing bnfbnf1.txt as both the input grammar and the file to be parsed (plus the BNFTokenizer) will result in a “Unknown Token” exception.  This is not your fault.  It would seem that this should be theoretically possible, but there seems to be an odd dependence between the tokenizer and the parser that prevents this.  The reasons for this are still an open question.  The solution lies in more research into understanding the relationship and interaction between the parser and the tokenizer.  Our current research indicates that the parser and the tokenizer are abstractly equivalent and serve to divide a higher order parsing problem down into two disconnected pieces of lower dimensionality.  Welcome to the edge of knowledge in computer science!
Copy your code for MakeParserFactAlgo.dAlgo here
2) (45 pts total) Dijkstra’s Shortest-Path Algorithm
Consider the following map of Texas cities and the mileage between them.   This is what we refer to as a “graph” where the cities are “vertices”.   The roads are called the “edges” of the graph.   This map is a “weighted” graph because each edge has a value, the distance between the cities.   A map like this can be considered a special case of a “directed graph” where each connection between cities is really two single direction arrows in opposite directions.

[image: image1]
How do programs like MapQuest calculate the best route from one place to another?  In 1959, the famous Dutch mathematician/computer scientist Edsger Dijkstra published a simple, elegant algorithm for finding the shortest path between any two vertices of a weighted, directed graph (See, for instance, http://en.wikipedia.org/wiki/Dijkstra's_algorithm).
Dijkstra (pronounced like “dikes-stra”), one of the most famous names in all of computer science, devised a simple “greedy algorithm” (See http://en.wikipedia.org/wiki/Greedy_algorithm) preferentially searches the paths emanating from the vertices with the shortest distance between the starting vertex.   That is, to find the shortest path from Houston  to Lubbock, the Dijkstra algorithm would search as follows:
1.  Start at Houston and put it into a set of possible destinations. 

2. Choose the city from the set with the shortest distance from Houston (Houston).  
3. Is that city the target city (Lubbock)?   

a. If so, then we’re done.

b. Othewise, take all of that city’s neighbors (Austin, San Antonio, Dallas) and add them to the set of possible choices.

  

i. If a city has been considered before, then don’t add it back to the set (no cities yet).
ii. If a city is already in the set, keep only the path that is the shortest.

4. Does solution exist?

a. No solution if the set of possible destinations is empty, i.e. all paths have been exhausted.
b. Otherwise, get the next city with the shortest path and loop back to step 3 above: San Antonio @ 200 miles is chosen from {Austin, San Antonio, Dallas}
In the second round, we see the following:

3. San Antonio is not target city

i. Not done

ii. Neighbors of San Antonio are El Paso, Houston, Brownsville, Austin.

1. Reject Houston as it was seen already.

2. For Austin, keep the 265 mi path over the 200+80 =280 mi path.

4. Does solution exist?

a. Set of possibilities is not empty

b. Dallas @ 240 miles is chosen from {Austin. Dallas, El Paso (via San Antonio), Brownsville (via San Antonio)}.  Loop back to step 3.

In the third round, we see the following:
3. Dallas is not target city

a. Not done

b. Neighbors of Dallas are Houston, Lubbock, and Austin
i. Reject Houston as it was already seen.

ii. For Austin, keep the 265 mi path over the 240+195 = 435 mi path.

4. Does solution exist?

a. Set of possibilities is not empty

b. Austin @ 265 miles is chosen from { Austin, El Paso (via San Antonio), Brownsville (via San Antonio), Lubbock (via Dallas)}.  Loop back to step 3.
In the fourth round, we see the following:

3. Austin is not target city

a. Not done

b. Neighbors of Austin are Houston, San Antonio, Lubbock, and Dallas
i. Reject Houston, Dallas and San Antonio as they were already seen.

ii. For Lubbock, keep the 240+350=590 mi path over the 265+420=685 mi path. 
4. Does solution exist?

a. Set of possibilities is not empty

b. Brownsville @ 200+275 = 475 miles is chosen from {El Paso (via San Antonio), Brownsville (via San Antonio), Lubbock (via Dallas)}.  Loop back to step 3.

In the fifth round, we see the following:

3. Not target city

a. Not done

b. Neighbors of Brownsville are El Paso and San Antonio

i. Reject San Antonio as it was already seen.
ii. For El Paso, keep the 200+555=755 mi path over the 200+275+830=1305 mi path. 
4. Does solution exist?

a. Set of possibilities is not empty

b. Lubbock @ 240+350 = 590 miles chosen from { El Paso (via San Antonio), Lubbock (via Dallas)}. Loop back to step 3.

In the sixth and final round, we see the following:

3. Lubbock is target city

a. Is done!

What we see it that Dijkstra’s greedy algorithm searches for the solution in an ever expanding arc around the start vertex.   This behavior can be clearly seen in the following demonstration applet: http://www-b2.is.tokushima-u.ac.jp/~ikeda/suuri/dijkstra/DijkstraApp.shtml?demo6.  

Note that in general, greedy algorithms are searching on very local bases, for instance, above, at any given time, the algorithm is looking only at the shortest current paths from the source, not any sort of overall shortest path.   That’s why it starts looking in the wrong direction and ends up taking 6 rounds to find a city that is only 2 cities away from Houston.  

The major steps of the algorithm above (Steps 1, 2, 3a, 3b, 4a and 4b, not including the sub-steps) constitute the “greedy” portion of the algorithm.  The sub-steps are the “accounting” parts that insure that the algorithm converges (finds a solution in a finite, well-defined amount of time), ignores loops in the graph, and exits if no solution exists.    

We should be able to program the “greedy” portion of the algorithm separately from the “accounting” portion.

First, let’s go over some of the data structures we will use in this problem.  All these classes can be found in the dijkstra package.

Vertex:  This class represents a vertex of a graph.   It consists of a name (a String), and a Set<VertexDistDyad> of neighboring vertices, each with an associated “distance” or “weight” along the edge to that vertex from this vertex. 

VertexDistDyad:  This class represents the dyad (pair) of a vertex and some associated distance.   The distance is the distance to some other vertex, which not necessarily a neighbor of the given vertex.  We will use this dyad both for describing neighbors, as in the Vertex class above, as well as to represent the total path distance from the given vertex back to some other vertex elsewhere in the graph.
DijkstraPQueueFactory: This is a specialized priority queue factory that will create a heap-based RAC with additional behaviors needed for the Dijkstra algorithm.  The RAC will of the type IRAContainer<NEList<VertexDistDyad>>, that is a RAC of non-empty lists of dyads.   

IList<VertexDistDyad>: We will use a list to represent a path along the graph from one vertex to another. IMTList<VertexDistDyad>> will be the lack of a path from one vertex to another.  NEList<VertexDistDyad>> will be a particular path, where the dyad element closest to the empty list will contain the starting vertex (distance= 0), and the subsequent dyads will be a subsequent neighbor with the distance set to the total path length back to the starting vertex.  For instance, the shortest path from Houston to Lubbock will look like this:  “((Lubbock, 590), (Dallas, 240), (Houston, 0))”
PathToString:  This is an IListAlgo that will create a nice String representation of the path given by IList<VertexDistDyad>.   The result of running PathToString on the result of Houston to Lubbock above will be ”Houston =240=> Dallas =350=> Lubbock”.  Note that this algorithm shows the distance between adjacent vertices not the total distances that the toString of the list itself shows.
TEST CODE IS SUPPLIED.
A. 20 pts: The “Greedy” portion of Dijkstra’s Shortest-Path Algorithm

This portion of the algorithm will be contained in the Vertex.shortestPathTo method, which will return a list representing the shortest path from this vertex to the given vertex.  
Let us look at the greedy portion of Dijkstra’s algorithm:

1. Put the starting vertex into the set of possible destinations:  Our set of possible destinations will be a priority queue (produced by DijkstraPQueueFactory) holding non-empty lists of paths from the starting vertex. So, to initialize our algorithm:

a. Create a non-empty, one element list a dyad consisting of this vertex and a zero distance.

b. Put that list into the priority queue.

2. Get the path with the shortest total distance from the queue (= set of destinations).  Remember that this is a path, i.e. a list of dyads, not a bare vertex or dyad.

3. Check if this is the target.   
a. Check the vertex inside the dyad at the front of the current shortest path to see if it equal to the target vertex.   Since this is the point to which the algorithm loops back to, then this conditional should be the loop’s conditional.   Which kind of loop should you use here?
b.  Insert new paths that include the neighbors (“getNext()”) of the first vertex in the current shortest path back into the queue.   
· You will need to write a short loop to process the elements of the set returned by Vertex.getNext().
· A new path consists of the current shortest path with another VertexDistDyad added to the front.  That dyad, vertex is one of the neighbor vertices and its distance is the sum of the shortest distance and the distance from that shortest path’s last vertex to the neighbor. (i.e. The total distance from the start vertex to the neighbor).  
· Remember that the dyads returned by getNext only contain the relative distances from that vertex to its neighbors.
· Remember that a path is an IList.
4. Does a solution exist?
a. If the queue is empty, there are no more possible solutions. In this case, return an empty list.
b. Otherwise, get the next shortest path from the queue and loop back to step 3.

5. If the loop exits normally, then the current shortest list will be the shortest path from this vertex to the given target vertex.  Return the current shortest list.

Copy your code for Vertex.shortestPathTo below:

B. (20 pts total) The “accounting” portion of Dijksta’s algorithm
The accounting portion of the code is all contained inside the special priority queue that is being used here: DijkstraPQueueFactory.    This class, as given to you, is essentially a copy of the heap-based priority queue solution to the heaps laboratory, with the following changes:

· The entire RAC system has been updated to include generics.

· Instead of using the static methods in the Heapifier class, the siftUp and siftDown methods have been copied over into this class so they can be modified.

· The Comparator used compares the vertices from the first dyad in the given lists.

· Two internal data structures have been added to RAC:

· Map<Vertex, Integer> heapLoc – This is a mapping that enables on to find the location of a given Vertex in the heap array.    This is used to quickly find paths to a vertex and update them with shorter paths if necessary.

· Set<Vertex> doneSet -- This is the set of all vertices that have ever been processed by the rest of the Dijkstra algorithm.   That is, every vertex whose path has ever been pulled out of the queue by its get method.   This is used to prevent endless processing by re-traversing the same vertices.
You are to modify the given code to enable it perform the additional tasks needed by the Dijkstra algorithm.
Remember that you are still fundamentally building a priority queue, so be careful about what changes you make to the existing code.

Add the following capabilities to the specified methods:

2.B.i. (5 pts) public INEList<VertexDistDyad> get() – The vertex in the first dyad of any returned path list needs to be saved in the doneSet.

2.B.ii (10 pts) public void put(INEList<VertexDistDyad> input) --  There are a number of modifications here:
· If the vertex from the first dyad in input has already been processed, then simply ignore the input and return.

· Try to find the index of the vertex from the first dyad of input.
· If the index returned by the Map object is null, then the vertex doesn’t yet exist in the queue, so put input at the end of the heap.   Don’t forget to increment the end position! Set a variable to hold the insertion index valule.
· If you found a valid index value, then compare the total path distances between the input path and the path in the heap.

· If you already have a shorter path in the heap, disregard input and simply return.

· Otherwise, replace the path in the heap with input.  Save the insertion index value!

· Use the saved insertion point index value to sift up the newly inserted data.

2.B.iii. (5 pts) private void siftDown(INEList<VertexDistDyad>[] A, int lo, int cur, int hi) – The problem is that the sifting process moves data in the heap, invalidating the information stored in the heapLoc Map object.  Modify the siftDown code so that whenever a piece of data is assigned to a position on the heap array, the heapLoc map is updated with its new location (i.e. overwrite the old value).

2.B.iv. (5 pts) private void siftUp(INEList<VertexDistDyad>[] A, int lo, int cur) – Same problem as siftDown.
Copy your code for DijkstraPQueueFactory below:







Lubbock





San Antonio





Dallas





Austin





Houston





Brownsville





El Paso





265





195





240





350





420





200





275





555





830





80





350








Dec. 10, 2007
12 of 13

