Trees

Assignment #4

Tuesday, February 16: Read Rosen and Write Essay Sections 9.6, 9.7, 9.8 -- Pages 647-672

Thursday, February 18: Read Rosen and Write Essay Section 10.1, 10.2, 10.3 -- Pages 683-722

Assignment #4

Homework Exercises

Section 9.1: Problem 31

Section 9.2: Problems 18, 28

Section 9.3: Problems 30, 31

Section 9.4: Problems 54, 55

Section 9.5: Problems 10, 26, 27, 46, 54

Extra Credit Problem: See Comp 280 web page

Motivation for Trees

Many, Many Applications

Fundamental Data Structure

Neat Algorithms

Simpler than Graphs

Examples and Animations

http://oneweb.utc.edu/~Christopher-Mawata/petersen/

Definitions

Tree

- Connected graph with no simple circuits.
- Graph with a unique path between any two vertices.

Rooted Tree

- Explicit Definition
 - -- A tree with one vertex called the *root*
- Recursive Definition
 - -- A single vertex *r* is a rooted tree with root *r*.
 - -- If T_1, \ldots, T_n are rooted trees with roots r_1, \ldots, r_n and *r* is a new vertex,

then the graph with edges joining r to r_1, \ldots, r_n is a rooted tree with root r.

Counting Theorems

Theorem 1: e = v - 1

Proof: By induction on the number of vertices. (Inductive Step: Remove a leaf.)

Theorem 2: $\# leaves \le m^{height}$ (m-ary trees)

Proof: By induction on the height of the tree. (Inductive Step: Remove the root.)

Theorem 3: $height \ge \log_m(\# leaves)$ Proof: This result is just a restatement of Theorem 2.

Standard Terminology

<u>Nodes</u>	<u>Trees</u>
Ancestor	Level
Parent	Height
Child	Balanced
Sibling	N-ary
Descendent	Binary
Leaf	Left Subtree / Child
Internal Vertex (Node)	Right Subtree / Child

Examples

Family Trees

Organization Charts

Computer File Systems

Recursive Calls

- -- Neville's Algorithm
- -- Bezier Subdivision

Parallel Processors

Computer Graphics

- -- Constructive Solid Geometry (CSG-Trees)
- -- Binary Space Partition Trees (BSP-Trees)

Constructive Solid Geometry

Primitive Solids

Boolean Operations

Intersection

• Union

•

CSG-Tree

- Leaves = Primitive Solids
- Internal Nodes = Boolean Ops or Transformations
- Root = Solid

• Difference

<u>CSG-Tree</u>

Spherical tank with two cylindrical pipes CSG tree: union of 1 sphere and 2 cylinders

<u>CSG-Tree</u>

Solid block with three cylindrical holes,

CSG tree: subtract three cylinders from box

Applications

Minimal Spanning Trees

-- Minimizing Network Cost

Searching and Sorting

-- BSP-Trees (Computer Graphics)

Searching Arbitrary Trees

- -- Breadth First Search
- -- Depth First Search
 - -- Back Tracking
 - -- Graph Coloring Algorithm

Data Compression (Efficient Coding)

- -- Prefix Coding -- Horner's Method
- -- Huffman Coding

Game Trees

-- Min-Max Strategy

Binary Search Trees

Applications

- Fast Searching and Sorting any Ordered Collection
 - -- Dictionaries
 - -- Telephone Books
- Computer Graphics / Computer Games
 - -- Hidden Surface Algorithms
 - -- Fast Polygon Shading (BSP Trees)

Examples and Animations

http://www.cosc.canterbury.ac.nz/mukundan/dsal/BSTNew.html

Algorithms for Binary Search Trees

Sorting

If *v* < *root*, Insert into Left Subtree Else *v* > *root*, Insert into Right Subtree

Searching

If v = root, FOUND

Else if *v* < *root*, Search Left Subtree

Else *v* > *root*, Search Right Subtree

Binary Space Partitioning Trees (BSP-Trees)

Algorithm for Generating a BSP-Tree

- Select any polygon (plane) in the scene for the root.
- Partition all the other polygons in the scene to the back (left subtree) or the front (right subtree).
- Split any polygons lying on both sides of the root.
- Build the left and right subtrees recursively.

BSP-Tree Rendering Algorithm (In Order Tree Traversal)

- If the eye is in front of the root, then
 - -- Display the left subtree (behind)
 - -- Display the root
 - -- Display the right subtree (front)
- If the eye is in back of the root, then
 - -- Display the right subtree (front)
 - -- Display the root
 - -- Display the left subtree (back)

Binary Space Partitioning Trees (continued)

Advantages

- Can use the same BSP-tree for different positions of the eye.
- When we want to move around in a scene, the BSP-tree is the preferred approach to detecting hidden surfaces.

Binary Space Partitioning Trees

http://maven.smith.edu/~mcharley/bsp/createbsptree.html

Ordered Tree Traversal

Pre Order

- Visit the Root
- Pre Order Traverse the Children T_1, \dots, T_n

In Order

- In Order Traverse T_1
- Visit the Root
- In Order Traverse the Children T_2, \ldots, T_n

Post Order

- Post Order Traverse the Children T_1, \ldots, T_n
- Visit the Root

Applications

CSG Tree Evaluation Algorithm

• In Order Tree Traversal

Arithmetic and Logical Expressions

- Infix Form
- Prefix Form (Polish Notation)
- Postfix Form (Reverse Polish Notation)

BSP-Tree Rendering Algorithm

- Back to Front -- In Order
- From to Back -- Reverse In Order

<u>CSG Tree Evaluation Algorithm -- In Order Tree Traversal</u>

Spherical tank with two cylindrical pipes CSG tree: union of 1 sphere and 2 cylinders

BSP-Tree Rendering Algorithm

- If the eye is in front of the root (In Order Tree Traversal)
 - -- Display the left subtree (behind)
 - -- Display the root
 - -- Display the right subtree (front)
- If the eye is behind the root (Reverse Order Tree Traversal)
 - -- Display the right subtree (front)
 - -- Display the root
 - -- Display the left subtree (back)

Tree Searching Algorithms

Depth First Search (Back Tracking)

- Base Case: Search the root.
- Recursion: For each vertex adjacent to the root, perform Depth First Search.
- STOP When object is found or all vertices have been searched.

Breadth First Search

- Level 0: Search the root.
- Level 1: Search all the children of the root.
 - •
- Level *n*: Search all the children incident to parents on level n-1.
- STOP When object is found or all vertices have been searched.

Complexity

• $O(n^2) = O(e)$

Tree Searching Algorithms

Depth First Search (Back Tracking)

http://www.rci.rutgers.edu/~cfs/472_html/AI_SEARCH/SearchAni mations.html

Breadth First Search

http://www.rci.rutgers.edu/~cfs/472_html/AI_SEARCH/SearchAni mations.html

Applications

Depth First Search -- Backtracking

n Queen Problem http://www.apl.jhu.edu/~hall/NQueens.html

http://www.animatedrecursion.com/advanced/the_eight_queens_pr oblem.html

Applications

• Graph Coloring

http://oneweb.utc.edu/~Christopher-Mawata/petersen/lesson8.htm

• Web Spiders

Prefix Coding

Efficient, Non-Redundant Coding

Horner's Method

Fast Polynomial Evaluation -- O(n) Multiplications

Huffman Coding

Coding Algorithm

- Assign probability to each symbol
- Combine trees (and their probabilities) with smallest probabilities
 - -- Smaller probability to right $\rightarrow 1$
 - -- Larger probability to left $\rightarrow 0$
- Symbol code = unique path of 0's and 1's from root

Proof of Optimality

• Homework

Huffman Coding

http://www.cs.duke.edu/csed/poop/huff/info/

http://www.maths.abdn.ac.uk/~igc/tch/mx4002/notes/node59.html

Universal Address System

Lexicographic Order (Depth First)

Interval Subdivision

•

Interval Subdivision

 $P_{b_1 \cdots b_n} \leftrightarrow Control Points for the Interval [.b_1 \cdots b_n, .b_1 \cdots b_n + 2^{-n}]$

Game Trees

- Vertices \leftrightarrow Positions
- Edges ↔ Legal Moves
- Leaves \leftrightarrow Final Positions
 - -- Win = 1 (First Player)
 - -- Draw = 0 (First Player)
 - -- Lose = -1 (First Player)

Game Trees

http://www.youtube.com/watch?v=SO-oXQgvJt4

http://www.youtube.com/watch?v=Unh51VnD-hA

Min-Max Strategy

Payoff -- Recursive Definition

- *payoff(leaf)* = *value at leaf*
- *payoff(node at even level)* = max(*payoff to children*)
- payoff(node at odd level) = min(payoff to children)

Min-Max Strategy

- First Player -- Moves to Child with <u>Maximum</u> Payoff
- Second Player -- Moves to Child with Minimum Payoff

Min-Max Strategy (continued)

Theorem: The Min-Max Strategy is Optimal for both Players Payoff at each vertex represents payoff to first player if game starts in this vertex and both players play min-max strategy.

Proof: By induction on level.