
Trees

Assignment #4

Tuesday, February 16: Read Rosen and Write Essay

Sections 9.6, 9.7, 9.8 -- Pages 647-672

Thursday, February 18: Read Rosen and Write Essay

Section 10.1, 10.2, 10.3 -- Pages 683-722

Assignment #4

Homework Exercises

Section 9.1: Problem 31

Section 9.2: Problems 18, 28

Section 9.3: Problems 30, 31

Section 9.4: Problems 54, 55

Section 9.5: Problems 10, 26, 27, 46, 54

Extra Credit Problem: See Comp 280 web page

Motivation for Trees

Many, Many Applications

Fundamental Data Structure

Neat Algorithms

Simpler than Graphs

Examples and Animations

http://oneweb.utc.edu/~Christopher-Mawata/petersen/

Definitions

Tree

• Connected graph with no simple circuits.

• Graph with a unique path between any two vertices.

Rooted Tree

• Explicit Definition

-- A tree with one vertex called the root

• Recursive Definition

-- A single vertex r is a rooted tree with root r.

-- If T1, …, Tn are rooted trees with roots r1, …, rn and r is a new vertex,

then the graph with edges joining r to r1, …, rn is a rooted tree with root r.

Counting Theorems

Theorem 1: e = v −1

Proof: By induction on the number of vertices.
(Inductive Step: Remove a leaf.)

Theorem 2: # leaves ≤ mheight (m-ary trees)
Proof: By induction on the height of the tree.

(Inductive Step: Remove the root.)

Theorem 3: height ≥ logm (# leaves)
Proof: This result is just a restatement of Theorem 2.

Standard Terminology

Nodes Trees

Ancestor Level

Parent Height

Child Balanced

Sibling N-ary

Descendent Binary

Leaf -- Left Subtree / Child

Internal Vertex (Node) -- Right Subtree / Child

Examples

Family Trees

Organization Charts

Computer File Systems

Recursive Calls
-- Neville’s Algorithm
-- Bezier Subdivision

Parallel Processors

Computer Graphics
-- Constructive Solid Geometry (CSG-Trees)
-- Binary Space Partition Trees (BSP-Trees)

Constructive Solid Geometry

Primitive Solids

BOX SPHERE CYLINDER CONE TORUS

Boolean Operations CSG-Tree

• Union • Leaves = Primitive Solids

• Intersection • Internal Nodes = Boolean Ops or Transformations

• Difference • Root = Solid

CSG-Tree

�

∪

�

sphere

�

cylinder�

cylinder

�

∪ �

rotation

Spherical tank with two cylindrical pipes CSG tree: union of 1 sphere and 2 cylinders

CSG-Tree

�

−

�

−

�

−

�

box

�

cylinder 1�

cylinder 2
�

cylinder 3

Solid block with three cylindrical holes, CSG tree: subtract three cylinders from box

Applications

Minimal Spanning Trees
-- Minimizing Network Cost

Searching and Sorting
-- BSP-Trees (Computer Graphics)

Searching Arbitrary Trees
-- Breadth First Search
-- Depth First Search

-- Back Tracking
-- Graph Coloring Algorithm

Data Compression (Efficient Coding)
-- Prefix Coding -- Horner’s Method
-- Huffman Coding

Game Trees
-- Min-Max Strategy

Binary Search Trees

Applications

• Fast Searching and Sorting any Ordered Collection

-- Dictionaries

-- Telephone Books

• Computer Graphics / Computer Games

-- Hidden Surface Algorithms

-- Fast Polygon Shading (BSP Trees)

Examples and Animations

http://www.cosc.canterbury.ac.nz/mukundan/dsal/BSTNew.html

Algorithms for Binary Search Trees

Sorting

If v < root , Insert into Left Subtree

Else v > root , Insert into Right Subtree

Searching

If v = root , FOUND

Else if v < root , Search Left Subtree

Else v > root , Search Right Subtree

Binary Space Partitioning Trees (BSP-Trees)

Algorithm for Generating a BSP–Tree
• Select any polygon (plane) in the scene for the root.
• Partition all the other polygons in the scene to the back (left subtree) or the front

(right subtree).
• Split any polygons lying on both sides of the root.
• Build the left and right subtrees recursively.

BSP-Tree Rendering Algorithm (In Order Tree Traversal)
• If the eye is in front of the root, then

-- Display the left subtree (behind)
-- Display the root
-- Display the right subtree (front)

• If the eye is in back of the root, then
-- Display the right subtree (front)
-- Display the root
-- Display the left subtree (back)

Binary Space Partitioning Trees (continued)

Advantages

• Can use the same BSP–tree for different positions of the eye.

• When we want to move around in a scene, the BSP-tree is

the preferred approach to detecting hidden surfaces.

Binary Space Partitioning Trees

http://maven.smith.edu/~mcharley/bsp/createbsptree.html

Ordered Tree Traversal

Pre Order

• Visit the Root

• Pre Order Traverse the Children T1,…,Tn

In Order

• In Order Traverse T1

• Visit the Root

• In Order Traverse the Children T2,…,Tn

Post Order

• Post Order Traverse the Children T1,…,Tn

• Visit the Root

Applications

CSG Tree Evaluation Algorithm

• In Order Tree Traversal

Arithmetic and Logical Expressions

• Infix Form

• Prefix Form (Polish Notation)

• Postfix Form (Reverse Polish Notation)

BSP-Tree Rendering Algorithm

• Back to Front -- In Order

• From to Back -- Reverse In Order

CSG Tree Evaluation Algorithm -- In Order Tree Traversal

�

∪

�

sphere

�

cylinder�

cylinder

�

∪ �

rotation

Spherical tank with two cylindrical pipes CSG tree: union of 1 sphere and 2 cylinders

BSP-Tree Rendering Algorithm

• If the eye is in front of the root (In Order Tree Traversal)

-- Display the left subtree (behind)

-- Display the root

-- Display the right subtree (front)

• If the eye is behind the root (Reverse Order Tree Traversal)

-- Display the right subtree (front)

-- Display the root

-- Display the left subtree (back)

Tree Searching Algorithms

Depth First Search (Back Tracking)
• Base Case: Search the root.
• Recursion: For each vertex adjacent to the root, perform Depth First Search.
• STOP When object is found or all vertices have been searched.

Breadth First Search
• Level 0: Search the root.
• Level 1: Search all the children of the root.

• Level n: Search all the children incident to parents on level n −1.
• STOP When object is found or all vertices have been searched.

Complexity

• O(n2) = O(e)

Tree Searching Algorithms

Depth First Search (Back Tracking)

http://www.rci.rutgers.edu/~cfs/472_html/AI_SEARCH/SearchAni
mations.html

Breadth First Search

http://www.rci.rutgers.edu/~cfs/472_html/AI_SEARCH/SearchAni
mations.html

Applications

Depth First Search -- Backtracking

n Queen Problem
http://www.apl.jhu.edu/~hall/NQueens.html

http://www.animatedrecursion.com/advanced/the_eight_queens_pr
oblem.html

Applications

• Graph Coloring
h t t p : / / o n e w e b . u t c . e d u / ~ C h r i s t o p h e r -

Mawata/petersen/lesson8.htm

• Web Spiders

Prefix Coding

a

b

c d

0

10

1

0 1

•

Efficient, Non-Redundant Coding

Horner’s Method

a0

a1

a2 a3

+

+

+

x

x

x

a3x + a2

(a3x + a2)x + a1

(a3x + a2)x + a1() x + a0

Fast Polynomial Evaluation -- O(n) Multiplications

Huffman Coding

Coding Algorithm

• Assign probability to each symbol

• Combine trees (and their probabilities) with smallest
probabilities
-- Smaller probability to right → 1
-- Larger probability to left → 0

• Symbol code = unique path of 0’s and 1’s from root

Proof of Optimality

• Homework

Huffman Coding

http://www.cs.duke.edu/csed/poop/huff/info/

http://www.maths.abdn.ac.uk/~igc/tch/mx4002/notes/node59.html

Universal Address System

0

1 2 3

1.1 1.2 3.1 3.2 3.3 3.4
Lexicographic Order (Depth First)

Interval Subdivision

�

[0,1]

21

�

2
8

, 3
8

⎡
⎣ ⎢

⎤
⎦ ⎥

�

1
8

, 2
8

⎡
⎣ ⎢

⎤
⎦ ⎥

�

0
8

, 1
8

⎡
⎣ ⎢

⎤
⎦ ⎥

�

3
8

, 4
8

⎡
⎣ ⎢

⎤
⎦ ⎥

�

4
8

, 5
8

⎡
⎣ ⎢

⎤
⎦ ⎥

�

5
8

, 6
8

⎡
⎣ ⎢

⎤
⎦ ⎥

�

6
8

, 7
8

⎡
⎣ ⎢

⎤
⎦ ⎥

�

7
8

, 8
8

⎡
⎣ ⎢

⎤
⎦ ⎥

�

0
4

, 1
4

⎡
⎣ ⎢

⎤
⎦ ⎥

�

1
4

, 2
4

⎡
⎣ ⎢

⎤
⎦ ⎥

�

2
4

, 3
4

⎡
⎣ ⎢

⎤
⎦ ⎥

�

3
4

, 4
4

⎡
⎣ ⎢

⎤
⎦ ⎥

�

0
2

, 1
2

⎡
⎣ ⎢

⎤
⎦ ⎥

�

1
2

, 2
2

⎡
⎣ ⎢

⎤
⎦ ⎥

Interval Subdivision

21

�

0

�

1

�

00

�

01

�

10

�

11

root

�

000

�

001

�

010

�

011

�

100

�

101

�

110

�

111

�

b1bn ↔ [.b1bn , .b1bn + 2−n]

Bezier Subdivision

P

2

P1

P11

P111

P10

P100 P101 P110

1

P0

P00 P01

P001P000 P010 P011

�

Pb1bn
↔ Control Points for the Interval

�

[.b1bn , .b1bn + 2−n]

Game Trees

• Vertices ↔ Positions

• Edges ↔ Legal Moves

• Leaves ↔ Final Positions

-- Win = 1 (First Player)

-- Draw = 0 (First Player)

-- Lose = –1 (First Player)

Game Trees

http://www.youtube.com/watch?v=SO-oXQgvJt4

http://www.youtube.com/watch?v=Unh51VnD-hA

Min-Max Strategy

Payoff -- Recursive Definition

• payoff (leaf) = value at leaf

• payoff (node at even level) = max(payoff to children)

• payoff (node at odd level) = min(payoff to children)

Min-Max Strategy

• First Player -- Moves to Child with Maximum Payoff

• Second Player -- Moves to Child with Minimum Payoff

Min-Max Strategy (continued)

Theorem: The Min-Max Strategy is Optimal for both Players

Payoff at each vertex represents payoff to first player if game

 starts in this vertex and both players play min-max strategy.

Proof:By induction on level.

