Assignment \#4

Tuesday, February 16: Read Rosen and Write Essay
Sections 9.6, 9.7, 9.8 -- Pages 647-672

Thursday, February 18: Read Rosen and Write Essay
Section 10.1, 10.2, 10.3 -- Pages 683-722

Assignment \#4

Homework Exercises
Section 9.1: Problem 31
Section 9.2: Problems 18, 28
Section 9.3: Problems 30, 31
Section 9.4: Problems 54, 55
Section 9.5: Problems 10, 26, 27, 46, 54
Extra Credit Problem: See Comp 280 web page

Motivation for Trees

Many, Many Applications

Fundamental Data Structure

Neat Algorithms

Simpler than Graphs

Examples and Animations

http://oneweb.utc.edu/~Christopher-Mawata/petersen/

Definitions

Tree

- Connected graph with no simple circuits.
- Graph with a unique path between any two vertices.

Rooted Tree

- Explicit Definition
-- A tree with one vertex called the root
- Recursive Definition
-- A single vertex r is a rooted tree with root r.
-- If T_{1}, \ldots, T_{n} are rooted trees with roots r_{1}, \ldots, r_{n} and r is a new vertex, then the graph with edges joining r to r_{1}, \ldots, r_{n} is a rooted tree with root r.

Counting Theorems

Theorem 1: $e=v-1$
Proof: By induction on the number of vertices. (Inductive Step: Remove a leaf.)

Theorem 2: \# leaves $\leq m^{\text {height }}$ (m-ary trees)
Proof: By induction on the height of the tree. (Inductive Step: Remove the root.)

Theorem 3: height $\geq \log _{m}$ (\# leaves)
Proof: This result is just a restatement of Theorem 2.

Standard Terminology

Nodes Trees

Trees
Ancestor Level

Level
ParentChildSiblingDescendentLeaf
Internal Vertex (Node)

Height
Balanced
N -ary
Binary
-- Left Subtree / Child
-- Right Subtree / Child

Examples

Family Trees
Organization Charts
Computer File Systems
Recursive Calls
-- Neville's Algorithm
-- Bezier Subdivision
Parallel Processors
Computer Graphics
-- Constructive Solid Geometry (CSG-Trees)
-- Binary Space Partition Trees (BSP-Trees)

Constructive Solid Geometry

Primitive Solids

BOX

SPHERE

CYLINDER

CONE

TORUS

Boolean Operations

- Union
- Intersection
- Difference

CSG-Tree

- Leaves $=$ Primitive Solids
- Internal Nodes $=$ Boolean Ops or Transformations
- Root $=$ Solid

CSG-Tree

Spherical tank with two cylindrical pipes
CSG tree: union of 1 sphere and 2 cylinders

CSG-Tree

Solid block with three cylindrical holes,
CSG tree: subtract three cylinders from box

Applications

Minimal Spanning Trees
-- Minimizing Network Cost
Searching and Sorting
-- BSP-Trees (Computer Graphics)
Searching Arbitrary Trees
-- Breadth First Search
-- Depth First Search
-- Back Tracking
-- Graph Coloring Algorithm
Data Compression (Efficient Coding)
-- Prefix Coding -- Horner’s Method
-- Huffman Coding
Game Trees
-- Min-Max Strategy

Binary Search Trees

Applications

- Fast Searching and Sorting any Ordered Collection
-- Dictionaries
-- Telephone Books
- Computer Graphics / Computer Games
-- Hidden Surface Algorithms
-- Fast Polygon Shading (BSP Trees)

Examples and Animations

http://www.cosc.canterbury.ac.nz/mukundan/dsal/BSTNew.html

Algorithms for Binary Search Trees

Sorting
If $v<r o o t$, Insert into Left Subtree
Else $v>$ root, Insert into Right Subtree

Searching
If $v=$ root, FOUND
Else if $v<$ root, Search Left Subtree
Else $v>$ root , Search Right Subtree

Binary Space Partitioning Trees (BSP-Trees)

Algorithm for Generating a BSP-Tree

- Select any polygon (plane) in the scene for the root.
- Partition all the other polygons in the scene to the back (left subtree) or the front (right subtree).
- Split any polygons lying on both sides of the root.
- Build the left and right subtrees recursively.

BSP-Tree Rendering Algorithm (In Order Tree Traversal)

- If the eye is in front of the root, then
-- Display the left subtree (behind)
-- Display the root
-- Display the right subtree (front)
- If the eye is in back of the root, then
-- Display the right subtree (front)
-- Display the root
-- Display the left subtree (back)

Binary Space Partitioning Trees (continued)

Advantages

- Can use the same BSP-tree for different positions of the eye.
- When we want to move around in a scene, the BSP-tree is the preferred approach to detecting hidden surfaces.

Binary Space Partitioning Trees

http://maven.smith.edu/~mcharley/bsp/createbsptree.html

Ordered Tree Traversal

Pre Order

- Visit the Root
- Pre Order Traverse the Children T_{1}, \ldots, T_{n}

In Order

- In Order Traverse T_{1}
- Visit the Root
- In Order Traverse the Children T_{2}, \ldots, T_{n}

Post Order

- Post Order Traverse the Children T_{1}, \ldots, T_{n}
- Visit the Root

Applications

CSG Tree Evaluation Algorithm

- In Order Tree Traversal

Arithmetic and Logical Expressions

- Infix Form
- Prefix Form (Polish Notation)
- Postfix Form (Reverse Polish Notation)

BSP-Tree Rendering Algorithm

- Back to Front -- In Order
- From to Back -- Reverse In Order

CSG Tree Evaluation Algorithm -- In Order Tree Traversal

Spherical tank with two cylindrical pipes
CSG tree: union of 1 sphere and 2 cylinders

BSP-Tree Rendering Algorithm

- If the eye is in front of the root (In Order Tree Traversal)
-- Display the left subtree (behind)
-- Display the root
-- Display the right subtree (front)
- If the eye is behind the root (Reverse Order Tree Traversal)
-- Display the right subtree (front)
-- Display the root
-- Display the left subtree (back)

Tree Searching Algorithms

Depth First Search (Back Tracking)

- Base Case: Search the root.
- Recursion: For each vertex adjacent to the root, perform Depth First Search.
- STOP When object is found or all vertices have been searched.

Breadth First Search

- Level 0: Search the root.
- Level 1: Search all the children of the root.
- Level n : Search all the children incident to parents on level $n-1$.
- STOP When object is found or all vertices have been searched.

Complexity

- $\quad O\left(n^{2}\right)=O(e)$

Tree Searching Algorithms

Depth First Search (Back Tracking)
http://www.rci.rutgers.edu/~cfs/472_html/AI_SEARCH/SearchAni mations.html

Breadth First Search
http://www.rci.rutgers.edu/~cfs/472_html/AI_SEARCH/SearchAni mations.html

Applications

Depth First Search -- Backtracking
n Queen Problem
http://www.apl.jhu.edu/~hall/NQueens.html
http://www.animatedrecursion.com/advanced/the_eight_queens_pr oblem.html

Applications

- Graph Coloring http://oneweb.utc.edu/~ChristopherMawata/petersen/lesson8.htm
- Web Spiders

Prefix Coding

Efficient, Non-Redundant Coding

Horner's Method

Fast Polynomial Evaluation -- $O(n)$ Multiplications

Huffman Coding

Coding Algorithm

- Assign probability to each symbol
- Combine trees (and their probabilities) with smallest probabilities
-- Smaller probability to right $\rightarrow 1$
-- Larger probability to left $\rightarrow 0$
- Symbol code $=$ unique path of 0 's and 1 's from root

Proof of Optimality

- Homework

Huffman Coding

http://www.cs.duke.edu/csed/poop/huff/info/
http://www.maths.abdn.ac.uk/~igc/tch/mx4002/notes/node59.html

Universal Address System

Lexicographic Order (Depth First)

Interval Subdivision

Interval Subdivision

Bezier Subdivision

$P_{b_{1} \cdots b_{n}} \leftrightarrow$ Control Points for the Interval $\left[. b_{1} \cdots b_{n}, . b_{1} \cdots b_{n}+2^{-n}\right]$

Game Trees

- Vertices \leftrightarrow Positions
- Edges \leftrightarrow Legal Moves
- Leaves \leftrightarrow Final Positions

$$
\begin{array}{ll}
- \text { Win }=1 & \text { (First Player) } \\
- \text { Draw }=0 & \text { (First Player) } \\
- \text { Lose }=-1 & \text { (First Player) }
\end{array}
$$

Game Trees

http://www.youtube.com/watch?v=SO-oXQgvJt4
http://www.youtube.com/watch?v=Unh51VnD-hA

Min-Max Strategy

Payoff -- Recursive Definition

- payoff(leaf $)=$ value at leaf
- payoff $($ node at even level $)=\max ($ payoff to children $)$
- payoff(node at odd level $)=\min ($ payoff to children $)$

Min-Max Strategy

- First Player -- Moves to Child with Maximum Payoff
- Second Player -- Moves to Child with Minimum Payoff

Min-Max Strategy (continued)

Theorem: The Min-Max Strategy is Optimal for both Players
Payoff at each vertex represents payoff to first player if game starts in this vertex and both players play min-max strategy.

Proof: By induction on level.

