
� � ���� ��

c� Kluwer Academic Publishers� Boston� Manufactured in The Netherlands�

Elevator Group Control Using Multiple

Reinforcement Learning Agents

ROBERT H� CRITES AND ANDREW G� BARTO crites�barto	cs�umass�edu

Department of Computer Science� University of Massachusetts� Amherst� MA �����

Received Feb �� ����

Editor� Michael Huhns and Gerhard Weiss

Abstract� Recent algorithmic and theoretical advances in reinforcement learning �RL� have
attracted widespread interest� RL algorithms have appeared that approximate dynamic program

ming on an incremental basis� They can be trained on the basis of real or simulated experiences�
focusing their computation on areas of state space that are actually visited during control� mak

ing them computationally tractable on very large problems� If each member of a team of agents
employs one of these algorithms� a new collective learning algorithm emerges for the team as a
whole� In this paper we demonstrate that such collective RL algorithms can be powerful heuristic
methods for addressing large�scale control problems�
Elevator group control serves as our testbed� It is a di�cult domain posing a combination of

challengesnot seen in mostmulti
agent learning research to date� We use a teamof RL agents� each
of which is responsible for controlling one elevator car� The team receives a global reinforcement
signal which appears noisy to each agent due to the e�ects of the actions of the other agents�
the random nature of the arrivals and the incomplete observation of the state� In spite of these
complications� we show results that in simulation surpass the best of the heuristic elevator control
algorithms of which we are aware� These results demonstrate the power of multi
agent RL on a
very large scale stochastic dynamic optimization problem of practical utility�

Keywords� Reinforcement learning�multiple agents� teams� elevator group control� discrete event
dynamic systems

�� Introduction

Interest in developing capable learning systems is increasing within the multi�agent
and AI research communities �e�g�� Weiss � Sen� ������ Learning enables systems
to be more 	exible and robust� and it makes them better able to handle uncertainty
and changing circumstances� This is especially important in multi�agent systems�
where the designers of such systems have often faced the extremely di
cult task
of trying to anticipate all possible contingencies and interactions among the agents
ahead of time� Much the same could be said concerning the �eld of decentralized
control� where policies for the control stations are developed from a global vantage
point� and learning does not play a role� Even though executing the policies depends
only on the information available at each control station� the policies are designed
in a centralized way� with access to a complete description of the problem� Research
has focused on what constitutes an optimal policy under a given information pattern
but not on how such policies might be learned under the same constraints�
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Reinforcement learning �RL� �Barto � Sutton� forthcoming� Bertsekas � Tsitsik�
lis� ����� applies naturally to the case of autonomous agents� which receive sensa�
tions as inputs� and take actions that a
ect their environment in order to achieve
their own goals� RL is based on the idea that the tendency to produce an action
should be strengthened �reinforced� if it produces favorable results� and weakened
if it produces unfavorable results� This framework is appealing from a biological
point of view� since an animal has certain built�in preferences �such as pleasure or
pain�� but does not always have a teacher to tell it exactly what action it should
take in every situation�
If the members of a group of agents each employ an RL algorithm� the resulting

collective algorithm allows control policies to be learned in a decentralized way�
Even in situations where centralized information is available� it may be advanta�
geous to develop control policies in a decentralized way in order to simplify the
search through policy space� Although it may be possible to synthesize a system
whose goals can be achieved by agents with con�icting objectives� this paper fo�
cuses on teams of agents that share identical objectives corresponding directly to
the goals of the system as a whole�
To demonstrate the power of multi�agent RL� we focus on the di
cult problem of

elevator group supervisory control� Elevator systems operate in high�dimensional
continuous state spaces and in continuous time as discrete event dynamic systems�
Their states are not fully observable and they are non�stationary due to changing
passenger arrival rates� We use a team of RL agents� each of which is responsible for
controlling one elevator car� Each agent uses arti�cial neural networks to store its
action value estimates� We compare a parallel architecture where the agents share
the same networks with a decentralized architecture where the agents have their
own independent networks� In either case� the team receives a global reinforcement
signal which is noisy from the perspective of each agent due in part to the e
ects of
the actions of the other agents� Despite these di
culties� our system outperforms
all of the heuristic elevator control algorithms known to us� We also analyze the
policies learned by the agents� and show that learning is relatively robust even
in the face of increasingly incomplete state information� These results suggest
that approaches to decentralized control using multi�agent RL have considerable
promise�
In the following sections� we give some additional background on RL� introduce

the elevator domain� describe in more detail the multi�agent RL algorithm and
network architecture we used� present and discuss our results� and �nally draw
some conclusions� For further details on all these topics� see Crites �������

�� Reinforcement Learning

Both symbolic and connectionist learning researchers have focused primarily on
supervised learning� where a �teacher� provides the learning system with a set of
training examples in the form of input�output pairs� Supervised learning techniques
are useful in a wide variety of problems involving pattern classi�cation and function
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approximation� However� there are many situations in which training examples are
costly or even impossible to obtain� RL is applicable in these more di
cult situa�
tions� where the only help available is a �critic� that provides a scalar evaluation
of the output that was selected� rather than specifying the best output or a direc�
tion of how to change the output� In RL� one faces all the di
culties of supervised
learning combined with the additional di
culty of exploration� that is� determining
the best output for any given input�

RL tasks can be divided naturally into two types� In non�sequential tasks� agents
must learn mappings from situations to actions that maximize the expected imme�
diate payo
� In sequential tasks� agents must learn mappings from situations to
actions that maximize the expected long�term payo
s� Sequential tasks are more
di
cult because the actions selected by the agents may in	uence their future sit�
uations and thus their future payo
s� In this case� the agents interact with their
environment over an extended period of time� and they need to evaluate their ac�
tions on the basis of their long�term consequences�

From the perspective of control theory� RL techniques are ways of �nding approx�
imate solutions to stochastic optimal control problems� The agent is a controller�
and the environment is a system to be controlled� The objective is to maximize
some performance measure over time� Given a model of the state transition prob�
abilities and reward structure of the environment� these problems can be solved in
principle using dynamic programming �DP� algorithms� However� even though DP
only requires time that is polynomial in the number of states� in many problems of
interest� there are so many states that the amount of time required for a solution
is infeasible� Some recent RL algorithms have been designed to perform DP in
an incremental manner� Unlike traditional DP� these algorithms do not require a

priori knowledge of the state transition probabilities and reward structure of the
environment and can be used to improve performance on�line while interacting
with the environment� This on�line learning focuses computation on the areas of
state space that are actually visited during control� Thus� these algorithms are a
computationally tractable way of approximating DP on very large problems�

The same focusing phenomenon can also be achieved with simulated online train�
ing� One can often construct a simulation model without ever explicitly determining
the state transition probabilities for an environment �Barto � Sutton� forthcoming�
Crites � Barto� ������ �For an example of such a simulation model� see section �����
There are several advantages to this use of a simulation model if it is su
ciently ac�
curate� It is possible to generate huge amounts of simulated experience very quickly�
potentially speeding up the training process by many orders of magnitude over what
would be possible using actual experience� In addition� one need not be concerned
about the performance level of a simulated system during training� A successful
example of simulated online training is found in Tesauro�s TD�Gammon system
������ ����� ������ which used RL techniques to learn to play strong master�level
backgammon�
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���� Multi�Agent Reinforcement Learning

A variety of disciplines have contributed to the study of multi�agent systems� Many
researchers have focused on top�down approaches to building distributed systems�
creating them from a global vantage point� One drawback to this top�down ap�
proach is the extraordinary complexity of designing such agents� since it is ex�
tremely di
cult to anticipate all possible interactions and contingencies ahead of
time in complex systems�

Other researchers have recently taken the opposite approach� combining large
numbers of relatively unsophisticated agents in a bottom�up manner and seeing
what emerges when they are put together into a group� This amounts to a sort of
iterative procedure� designing a set of agents� observing their group behavior� and
repeatedly adjusting the design and noting its e
ect on group behavior� Although
such groups of simple agents often exhibit interesting and complex dynamics� there
is little understanding as yet how to create bottom�up designs that can achieve
complex pre�de�ned goals�

Multi�agent RL attempts to combine the advantages of both approaches� It
achieves the simplicity of a bottom�up approach by allowing the use of relatively
unsophisticated agents that learn on the basis of their own experiences� At the same
time� RL agents adapt to a top�down global reinforcement signal� which guides their
behavior toward the achievement of complex pre�de�ned goals� As a result� very
robust systems for complex problems can be created with a minimum of human
e
ort �Crites � Barto� ������

Research on multi�agent RL dates back at least to the work of the Russian math�
ematician Tsetlin ������ and others from the �eld of learning automata� see Naren�
dra � Thathachar ������� A number of theoretical results have been obtained
in the context of non�sequential RL� Certain types of learning automata will con�
verge to an equilibrium point in zero�sum and non�zero�sum repeated games� See
Narendra � Thathachar ������ for details� For teams� an equilibrium point is a
local maximum �an element of the game matrix that is the maximum of both its
row and its column�� However� in more general non�zero�sum games� equilibrium
points often provide poor payo
s for all players� A good example of this is the
Prisoner�s Dilemma� where the only equilibrium point produces the lowest total
payo
 �Axelrod� ������

Starting in approximately ����� a number of researchers began to investigate ap�
plying sequential RL algorithms in multi�agent contexts� Although much of the
work has been in simplistic domains such as grid worlds� several interesting appli�
cations have appeared that have pointed to the promise of sequential multi�agent
RL�

Markey ������ applies parallel Q�learning to the problem of controlling a vocal
tract model with �� degrees of freedom� He discusses two architectures equivalent
to the distributed and parallel architectures described in section ���� Each agent
controls one degree of freedom in the action space� and distinguishes Q�values based
only on its own action selections�
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Bradtke ������ describes some initial experiments using RL for the decentralized
control of a 	exible beam� The task is to e
ciently damp out disturbances of a beam
by applying forces at discrete locations and times� He uses �� independent adaptive
controllers distributed along the beam� Each controller attempts to minimize its
own local costs and observes only its own local portion of the state information�
Dayan � Hinton ������ propose a managerial hierarchy they call Feudal RL� In

their scheme� higher�level managers set tasks for lower level managers� and reward
them as they see �t� Since the rewards may be di
erent at di
erent levels of the
hierarchy� this is not a team� Furthermore� only a single action selected at the
lowest level actually a
ects the environment� so in some sense� this is a hierarchical
architecture for a single agent�
Tan ������ reports on some simple hunter�prey experiments with multi�agent RL�

His focus is on the sharing of sensory information� policies� and experience among
the agents�
Shoham � Tennenholtz ������ investigate the social behavior that can emerge

from agents with simple learning rules� They focus on two simple n�k�g iterative
games� where n agents meet k at a time �randomly� to play game g�
Littman � Boyan ������ describe a distributed reinforcement learning algorithm

for packet routing based on the asynchronous Bellman�Ford algorithm� Their
scheme uses a single Q�function� where each state entry in the Q�function is as�
signed to a node in the network which is responsible for storing and updating the
value of that entry� This di
ers from most other work on distributed RL� where an
entire Q�function� not just a single entry� must be stored at each node�
In addition to the multi�agent RL research concerned with team problems� a

signi�cant amount of work has focused on zero�sum games� where a single agent
learns to play against an opponent� One of the earliest examples of this is Samuel�s
������ checker�playing program� A more recent example is Tesauro�s TD�Gammon
program ������ ����� ������ which has learned to play strong Master level backgam�
mon� These types of programs are often trained using self�play� and they can gener�
ally be viewed as single agents� Littman ������ ����� provides a detailed discussion
of RL applied to zero�sum games� both in the case where the agents alternate their
actions and where they take them simultaneously�
Very little work has been done on multi�agent RL in more general non�zero�

sum games� Sandholm � Crites ������ study the behavior of multi�agent RL in
the context of the iterated prisoner�s dilemma� They show that Q�learning agents
are able to learn the optimal strategy against the �xed opponent Tit�for�Tat� In
addition� they investigate the behavior that results when two Q�learning agents face
each other�

�� Elevator Group Control

This section introduces the problem of elevator group control� which serves as our
testbed for multi�agent reinforcement learning� It is a familiar problem to anyone
who has ever used an elevator system� but in spite of its conceptual simplicity� it
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poses signi�cant di
culties� Elevator systems operate in high�dimensional contin�
uous state spaces and in continuous time as discrete event dynamic systems� Their
states are not fully observable and they are non�stationary due to changing pas�
senger arrival rates� An optimal policy for elevator group control is not known�
so we use existing control algorithms as a standard for comparison� The elevator
domain provides an opportunity to compare parallel and distributed control archi�
tectures where each agent controls one elevator car� and to monitor the amount
of degradation that occurs as the agents face increasing levels of incomplete state
information�
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Figure �� Elevator system schematic diagram�

A schematic diagram of an elevator system �Lewis� ����� is presented in �gure ��
The elevators cars are represented as �lled boxes in the diagram� ��� represents a
hall call or someone wanting to enter a car� ��� represents a car call or someone
wanting to leave a car� The left side of a shaft represents upward moving cars and
calls� The right side of a shaft represents downward moving cars and calls� Cars
therefore move in a clockwise direction around the shafts�
Section ��� considers the nature of di
erent passenger arrival patterns� and their

implications� Section ��� reviews a variety of elevator control strategies from the
literature� Section ��� describes the particular simulated elevator system that will
be the focus in the remainder of this paper�
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���� Passenger Arrival Patterns

Elevator systems are driven by passenger arrivals� Arrival patterns vary during
the course of the day� In a typical o
ce building� the morning rush hour brings a
peak level of up tra
c� while a peak in down tra
c occurs during the afternoon�
Other parts of the day have their own characteristic patterns� Di
erent arrival
patterns have very di
erent e
ects� and each pattern requires its own analysis� Up�
peak and down�peak elevator tra
c are not simply equivalent patterns in opposite
directions� as one might initially guess� Down�peak tra
c has many arrival 	oors
and a single destination� while up�peak tra
c has a single arrival 	oor and many
destinations� This distinction has signi�cant implications� For example� in light up
tra
c� the average passenger waiting times can be kept very low by keeping idle
cars at the lobby where they will be immediately available for arriving passengers�
In light down tra
c� waiting times will be longer since it is not possible to keep an
idle car at every upper 	oor in the building� and therefore additional waiting time
will be incurred while cars move to service hall calls� The situation is reversed in
heavy tra
c� In heavy up tra
c� each car may �ll up at the lobby with passengers
desiring to stop at many di
erent upper 	oors� The large number of stops will cause
signi�cantly longer round�trip times than in heavy down tra
c� where each car may
�ll up after only a few stops at upper 	oors� For this reason� down�peak handling
capacity is much greater than up�peak capacity� Siikonen ������ illustrates these
di
erences in an excellent graph obtained through extensive simulations�

Since up�peak handling capacity is a limiting factor� elevator systems are de�
signed by predicting the heaviest likely up�peak demand in a building� and then
determining a con�guration that can accomodate that demand� If up�peak capacity
is su
cient� then down�peak generally will be also� Up�peak tra
c is the easiest
type to analyze� since all passengers enter cars at the lobby� their destination 	oors
are serviced in ascending order� and empty cars then return to the lobby� The
standard capacity calculations �Strakosch� ����� Siikonen� ����� assume that each
car leaves the lobby with M passengers ��� to ��� percent of its capacity� and
that the average passenger�s likelihood of selecting each destination 	oor is known�
Then probability theory is used to determine the average number of stops needed
on each round trip� From this one can estimate the average round trip time � � The
interval I � �

L represents the average amount of time between car arrivals to the
lobby� where L is the number of cars� Assuming that the cars are evenly spaced�
the average waiting time is one half the interval� In reality� the average wait is
somewhat longer�

The only control decisions in pure up tra
c are to determine when to open and
close the elevator doors at the lobby� These decisions a
ect how many passengers
will board an elevator at the lobby� Once the doors have closed� there is really
no choice about the next actions� the car calls registered by the passengers must
be serviced in ascending order and the empty car must then return to the lobby�
Pepyne � Cassandras ������ show that the optimal policy for handling pure up
tra
c is a threshold�based policy that closes the doors after an optimal number of
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passengers have entered the car� The optimal threshold depends upon the tra
c
intensity� and may also be a
ected by the number of car calls already registered
and by the state of the other cars� Of course� up tra
c is seldom completely pure�
Some method must be used for assigning any down hall calls�
More general two way tra
c comes in two varieties� In two way lobby tra
c�

up�moving passengers arrive at the lobby and down�moving passengers depart at
the lobby� Compared with pure up tra
c� the round trip times will be longer�
but more passengers will be served� In two way inter�oor tra
c� most passengers
travel between 	oors other than the lobby� Inter	oor tra
c is more complex than
lobby tra
c in that it requires almost twice as many stops per passenger� further
lengthening the round trip times�
Two way and down�peak tra
c patterns require many more decisions than does

pure up tra
c� After leaving the lobby� a car must decide how high to travel in the
building before turning� and at what 	oors to make additional pickups� Because
more decisions are required in a wider variety of contexts� more control strategies are
also possible in two way and down�peak tra
c situations� For this reason� a down�
peak tra
c pattern was chosen as a testbed for our research� Before describing the
testbed in detail� we review various elevator control strategies from the literature�

���� Elevator Control Strategies

The oldest relay�based automatic controllers used the principle of collective control
�Strakosch� ����� Siikonen� ������ where cars always stop at the nearest call in their
running direction� One drawback of this scheme is that there is no means to avoid
the phenomenon called bunching� where several cars arrive at a 	oor at about the
same time� making the interval� and thus the average waiting time� much longer�
Advances in electronics� including the advent of microprocessors� made possible
more sophisticated control policies�
The approaches to elevator control discussed in the literature generally �t into the

following categories� often more than one category� Unfortunately the descriptions
of the proprietary algorithms are often rather vague� since they are written for mar�
keting purposes� and are speci�cally not intended to be of bene�t to competitors�
For this reason� it is di
cult to ascertain the relative performance levels of many
of these algorithms� and there is no accepted de�nition of the current state of the
art �Ovaska� ������

������ Zoning Approaches

The Otis Elevator Company has used zoning as a starting point in dealing with
various tra
c patterns �Strakosch� ������ Each car is assigned a zone of the build�
ing� It answers hall calls within its zone� and parks there when it is idle� The goal
of the zoning approach is to keep the cars reasonably well separated and thus keep
the interval down� While this approach is quite robust in heavy tra
c� it gives up
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a signi�cant amount of 	exibility� Sakai � Kurosawa ������ of Hitachi describe a
concept called area control that is related to zoning� If possible� it assigns a hall
call to a car that already must stop at that 	oor due to a car call� Otherwise� a
car within an area � of the hall call is assigned if possible� The area � is a control
parameter that a
ects both the average wait time and the power consumption�

������ Search�Based Approaches

Another control strategy is to search through the space of possible car assignments�
selecting the one that optimizes some criterion such as the average waiting time�
Greedy search strategies perform immediate call assignment� that is� they assign
hall calls to cars when they are �rst registered� and never reconsider those assign�
ments� Non�greedy algorithms postpone their assignments or reconsider them in
light of updated information they may receive about additional hall calls or passen�
ger destinations� Greedy algorithms give up some measure of performance due to
their lack of 	exibility� but also require less computation time� In western countries�
an arriving car generally signals waiting passengers when it begins to decelerate �Si�
ikonen� ������ allowing the use of a non�greedy algorithm� The custom in Japan
is to signal the car assignment immediately upon call registration� This type of
signalling requires the use of a greedy algorithm�
Tobita et al ������ of Hitachi describe a system where car assignment occurs

when a hall button is pressed� They assign the car that minimizes a weighted sum
of predicted wait time� travel time� and number of riders� A fuzzy rule�based system
is used to pick the coe
cients and estimating functions� Simulations are used to
verify their e
ectiveness�
Receding horizon controllers are examples of non�greedy search�based approaches�

After every event� they perform an expensive search for the best assignment of
hall calls assuming no new passenger arrivals� Closed�loop control is achieved by
re�calculating a new open�loop plan after every event� The weaknesses of this
approach are its computational demands� and its lack of consideration of future
arrivals� Examples of receding horizon controllers are Finite Intervisit Minimization
�FIM� and Empty the System Algorithm �ESA� �Bao et al� ������ FIM attempts
to minimize squared waiting times and ESA attempts to minimize the length of the
current busy period�

������ Rule�Based Approaches

In some sense� all control policies could be considered rule�based� IF situation
THEN action� However� here we are more narrowly considering the type of pro�
duction systems commonly used in Arti�cial Intelligence� Ujihara � Tsuji ������
of Mitsubishi describe the AI����� system� It uses expert�system and fuzzy�logic
technologies� They claim that experts in group�supervisory control have the ex�
perience and knowledge necessary to shorten waiting times under various tra
c
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conditions� but admit that expert knowledge is fragmentary� hard to organize� and
di
cult to incorporate� They created a rule base by comparing the decisions made
by a conventional algorithm with decisions determined by simulated annealing� The
discrepancies were then analyzed by the experts� whose knowledge about solving
such problems was used to create fuzzy control rules� The fuzziness lies in the
IF part of the rules� Ujihara � Amano ������ describe the latest changes to the
AI����� system� A previous version used a �xed evaluation formula based on the
current car positions and call locations� A more recent version considers future
car positions and probable future hall calls� For example� one rule is IF �there is
a hall call registered on an upper 	oor� AND �there are a large number of cars
ascending towards the upper 	oors� THEN �assign one of the ascending cars on the
basis of estimated time of arrival�� Note that this is an immediate call allocation
algorithm� and the consequent of this particular rule about assigning cars on the
basis of estimated time of arrival bears some similarity to the greedy search�based
algorithms described above�

������ Other Heuristic Approaches

The Longest Queue First �LQF� algorithm assigns upward moving cars to the
longest waiting queue� and the Highest Unanswered Floor First �HUFF� algorithm
assigns upward moving cars to the highest queue with people waiting �Bao et al�
������ Both of these algorithms are designed speci�cally for down�peak tra
c�
They assign downward moving cars to any unassigned hall calls they encounter�
The Dynamic Load Balancing �DLB� algorithm attempts to keep the cars evenly
spaced by assigning contiguous non�overlapping sectors to each car in a way that
balances their loads �Lewis� ������ DLB is a non�greedy algorithm because it reas�
signs sectors after every event�

������ Adaptive and Learning Approaches

Imasaki et al ������ of Toshiba use a fuzzy neural network to predict passenger
waiting time distributions for various sets of control parameters� Their system
adjusts the parameters by evaluating alternative candidate parameters with the
neural network� They do not explain what control algorithm is actually used� what
its parameters are� or how the network is trained�

Hitachi researchers �Fujino et al� ����� Tobita et al� ����� use a greedy control
algorithm that combines multiple objectives such as wait time� travel time� crowd�
ing� and power consumption� The weighting of these objectives is accomplished
using parameters that are tuned online� A module called the learning function unit
collects tra
c statistics and attempts to classify the current tra
c pattern� The
tuning function unit generates parameter sets for the current tra
c pattern and
tests them using a built�in simulator� The best parameters are then used to control



��

the system� Searching the entire parameter space would be prohibitively expensive�
so heuristics are used about which parameter sets to test�

Levy et al ������ use dynamic programming �DP� o�ine to minimize the expected
time needed for completion of the current busy period� No discount factor is used�
since it is assumed that the values will all be �nite� The major di
erence between
this and Q�learning is that it must be performed o�ine since it uses a model of
the transition probabilities of the system and performs sweeps of the state space�
The trouble with using DP to calculate an optimal policy is that the state space
is very large� requiring drastic simpli�cation� Levy et al use several methods to
keep the size of the state space manageable� they consider a building with only
� cars and � 	oors� where the number of buttons that can be on simultaneously
is restricted� the state of the buttons are restricted to binary values �i�e�� elapsed
times are discarded�� and the cars have unlimited capacity� Construction of the
transition probability matrix is the principle part of the procedure� and it assumes
that the intensity of Poisson arrivals at each 	oor is known� Value iteration or
policy iteration is then performed to obtain the solution�

Markon et al ������ have devised a system that trains a neural network to perform
immediate call allocation� There are three phases of training� In phase one� while
the system is being controlled by an existing controller �the FLEX����� Fuzzy�AI
Group Control System of Fujitec�� supervised learning is used to train the network
to predict the hall call service times� This �rst phase of training is used to learn an
appropriate internal representation� i�e�� weights from the input layer to the hidden
layer of the network� At the end of the �rst phase of training� those weights are
�xed� In phase two� the output layer of the network is retrained to emulate the
existing controller� In phase three� single weights in the output layer of the network
are perturbed� and the resulting performance is measured on a tra
c sample� The
weights are then modi�ed in the direction of improved performance� This can be
viewed as a form of non�sequential reinforcement learning� The single�stage reward
is determined by measuring the system�s performance on a tra
c sample�

Their input representation uses �� units for each car� and their output representa�
tion uses one unit for each car� Hall calls are allocated to the car corresponding to
the output unit with the highest activation� They also describe a very clever way of
incorporating the permutational symmetry of the problem into the architecture of
their network� As they say� �If the states of two cars are interchanged� the outputs
should also be interchanged�� This is done by having as many sets of hidden units
as there are cars� and then explicitly linking together the appropriate weights�

Their system was tested in a simulation with � cars and �� 	oors� In a �typical
building�� trained on ��� passengers per hour� there was a very small improvement
of around � second in the average wait time over the existing controller� In a
more �untypical� building with uniformly distributed origin and destination 	oors
and ���� passengers per hour� the improvement in average wait time was almost �
seconds�

One advantage of this system is that it can maintain an adequate service level from
the beginning since it starts with a pre�existing controller� On the other hand� it is
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not clear whether this also may trap the controller in a suboptimal region of policy
space� It would be very interesting to use this centralized� immediate call allocation
network architecture as part of a sequential reinforcement learning algorithm�

���� The Elevator Testbed

The particular elevator system we study in this paper is a simulated ���story build�
ing with � elevator cars� The simulator was written by Lewis ������� Passenger
arrivals at each 	oor are assumed to be Poisson� with arrival rates that vary during
the course of the day� Our simulations use a tra
c pro�le �Bao et al� ����� which
dictates arrival rates for every ��minute interval during a typical afternoon down�
peak rush hour� Table � shows the mean number of passengers arriving at each of
	oors � through �� during each ��minute interval who are headed for the lobby� In
addition� there is inter�	oor tra
c which varies from �� to ��� of the tra
c to
the lobby�

Table �� The down�peak tra�c pro
le�

Time �� �� �� �� �� �� �� �� �� �� �� ��

Rate � � � � �� �� � � �� � � �

������ System Dynamics

The system dynamics are approximated by the following parameters�

� Floor time �the time to move one 	oor at maximum speed�� ���� secs�

� Stop time �the time needed to decelerate� open and close the doors� and accel�
erate again�� ���� secs�

� Turn time �the time needed for a stopped car to change direction�� � sec�

� Load time �the time for one passenger to enter or exit a car�� random variable
from a ��th order truncated Erlang distribution with a range from ��� to ���
secs and a mean of � sec�

� Car capacity� �� passengers�

The simulator is quite detailed� and is certainly realistic enough for our purposes�
However� a few minor deviations from reality should be noted� In the simulator� a
car can accelerate to full speed or decelerate from full speed in a distance of only
one half of a 	oor� while the distances would be somewhat longer in a real system�
Thus� the simulated acceleration and deceleration times are always the same� but in
a real system� they will vary depending on the speed of the elevator� For example�
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an express car descending from the tenth 	oor at top speed will take longer to
decelerate at the �rst 	oor than a car that is descending from the second 	oor�
The simulator also allows the cars to commit to stopping at a 	oor when they are
only one half of a 	oor away� Though this is not realistic for cars moving at top
speed� the concept of making decisions regarding the next 	oor where the car could
commit to stopping is valid�
Although the elevator cars in this system are homogeneous� the learning tech�

niques described in this paper can also be used in more general situations� e�g��
where there are several express cars or cars that only service some subset of the
	oors�

������ State Space

The state space is continuous because it includes the elapsed times since any hall
calls were registered� which are real�valued� Even if these real values are approxi�
mated as binary values� the size of the state space is still immense� Its components
include ��� possible combinations of the �� hall call buttons �up and down buttons
at each landing except the top and bottom�� ��� possible combinations of the ��
car buttons� and ��� possible combinations of the positions and directions of the
cars �rounding o
 to the nearest 	oor�� Other parts of the state are not fully ob�
servable� for example� the exact number of passengers waiting at each 	oor� their
exact arrival times� and their desired destinations� Ignoring everything except the
con�guration of the hall and car call buttons and the approximate position and
direction of the cars� we obtain an extremely conservative estimate of the size of a
discrete approximation to the continuous state space�

��� � ��� � ��� � ���� states�

������ Control Actions

Each car has a small set of primitive actions� If it is stopped at a 	oor� it must either
�move up� or �move down�� If it is in motion between 	oors� it must either �stop
at the next 	oor� or �continue past the next 	oor�� Due to passenger expectations�
there are two constraints on these actions� a car cannot pass a 	oor if a passenger
wants to get o
 there and cannot turn until it has serviced all the car buttons in
its present direction� We also added three additional heuristic constraints in an
attempt to build in some primitive prior knowledge� a car cannot stop at a 	oor
unless someone wants to get on or o
 there� it cannot stop to pick up passengers at
a 	oor if another car is already stopped there� and given a choice between moving
up and down� it should prefer to move up �since the down�peak tra
c tends to push
the cars toward the bottom of the building�� Because of this last constraint� the
only real choices left to each car are the stop and continue actions� The actions of
the elevator cars are executed asynchronously since they may take di
erent amounts
of time to complete�
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������ Performance Criteria

The performance objectives of an elevator system can be de�ned in many ways� One
possible objective is to minimize the average wait time� which is the time between
the arrival of a passenger and his entry into a car� Another possible objective is
to minimize the average system time� which is the sum of the wait time and the
travel time� A third possible objective is to minimize the percentage of passengers
that wait longer than some dissatisfaction threshold �usually �� seconds�� Another
common objective is to minimize the average squared wait time� We chose this
latter performance objective since it tends to keep the wait times low while also
encouraging fair service� For example� wait times of � and � seconds have the same
average �� seconds� as wait times of � and � seconds� But the average squared wait
times are di
erent ��� for � and � versus �� for � and ���

�� The Algorithm and Network Architecture

This section describes the multi�agent reinforcement learning algorithm that we
have applied to elevator group control� In our scheme� each agent is responsible
for controlling one elevator car� Each agent uses a modi�cation of Q�learning for
discrete�event systems� Together� they employ a collective form of reinforcement
learning� We begin by describing the modi�cations needed to extend Q�learning
into a discrete�event framework� and derive a method for determining appropri�
ate reinforcement signals in the face of uncertainty about exact passenger arrival
times� Then we describe the algorithm� the feedforward networks used to store
the Q�values� and the distinction between parallel and distributed versions of the
algorithm�

���� Discrete�Event Reinforcement Learning

Elevator systems can be modeled as discrete event systems �Cassandras� ������
where signi�cant events �such as passenger arrivals� occur at discrete times� but
the amount of time between events is a real�valued variable� In such systems�
the constant discount factor � used in most discrete�time reinforcement learning
algorithms is inadequate� This problem can be approached using a variable discount
factor that depends on the amount of time between events �Bradtke � Du
� ������
In this case� the cost�to�go is de�ned as an integral rather than as an in�nite sum�
as follows�

�X
t��

�tct becomes

Z �

�
e��� c�d��

where ct is the immediate cost at discrete time t� c� is the instantaneous cost at
continuous time � �the sum of the squared wait times of all currently waiting pas�
sengers�� and � controls the rate of exponential decay� � � ���� in the experiments
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described in this paper� Since the wait times are measured in seconds� we scale
down the instantaneous costs c� by a factor of ��� to keep the cost�to�go values
from becoming exceedingly large�
Because elevator system events occur randomly in continuous time� the branching

factor is e
ectively in�nite� which complicates the use of algorithms that require
explicit lookahead� Therefore� we employ a discrete event version of the Q�learning
algorithm since it considers only events encountered in actual system trajectories
and does not require a model of the state transition probabilities� The Q�learning
update rule �Watkins� ����� takes on the following discrete event form�

�  Q�x� a� � � � !

Z ty

tx

e�����tx�c�d� � e���ty�tx�min
b

 Q�y� b� �  Q�x� a�"�

where action a is taken from state x at time tx� the next decision is required from
state y at time ty� � is the learning rate parameter� and c� and � are de�ned as
above� e���ty�tx� acts as a variable discount factor that depends on the amount of
time between events�
Bradtke � Du
 ������ consider the case where c� is constant between events�

We extend their formulation to the case where c� is quadratic� since the goal is to
minimize squared wait times� The integral in the Q�learning update rule then takes
the form�

Z ty

tx

X
p

e�����tx��� � tx �wp�
�d��

where wp is the amount of time each passenger p waiting at time ty has already
waited at time tx� �Special care is needed to handle any passengers that begin or
end waiting between tx and ty� See section �������
This integral can be solved by parts to yield�

X
p

e��wp !
�

�	
�

�wp

��
�

w�
p

�
"� e���wp
ty�tx�!

�

�	
�

��wp � ty � tx�

��
�

�wp � ty � tx�
�

�
"�

A di
culty arises in using this formula since it requires knowledge of the waiting
times of all waiting passengers� However� only the waiting times of passengers who
press hall call buttons will be known in a real elevator system� The number of
subsequent passengers to arrive and their exact waiting times will not be available�
We examine two ways of dealing with this problem� which we call omniscient and
online reinforcement schemes�
The simulator has access to the waiting times of all passengers� It could use

this information to produce the necessary reinforcement signals� We call these
omniscient reinforcements� since they require information that is not available in a
real system� Note that it is not the controller that receives this extra information�
however� but rather the critic that is evaluating the controller� For this reason�
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even if omniscient reinforcements are used during the design phase of an elevator
controller on a simulated system� the resulting trained controller can be installed
in a real system without requiring any extra knowledge�
The other possibility is to train using only information that would be available to

a real system online� Such online reinforcements assume only that the waiting time
of the �rst passenger in each queue is known �which is the elapsed button time�� If
the Poisson arrival rate � for each queue is known or can be estimated� the Gamma
distribution can be used to estimate the arrival times of subsequent passengers� The
time until the nth subsequent arrival follows the Gamma distribution #�n� �

�
�� For

each queue� subsequent arrivals will generate the following expected costs during
the �rst b seconds after the hall button has been pressed�

�X
n��

Z b

�
�prob nth arrival occurs at time � � � �cost given arrival at time � � d�

�
�X
n��

Z b

�

�n�n��e���

�n� ��$

Z b��

�
w�e���w
��dwd� �

Z b

�

Z b��

�
�w�e���w
��dw d��

This integral can also be solved by parts to yield expected costs� A general
solution is provided in section ������ As described in section ���� using online
reinforcements produces results that are almost as good as those obtained with
omniscient reinforcements�

���� Collective Discrete�Event Q�Learning

Elevator system events can be divided into two types� Events of the �rst type are
important in the calculation of waiting times and therefore also reinforcements�
These include passenger arrivals and transfers in and out of cars in the omniscient
case� or hall button events in the online case� The second type are car arrival
events� which are potential decision points for the RL agents controlling each car�
A car that is in motion between 	oors generates a car arrival event when it reaches
the point where it must decide whether to stop at the next 	oor or continue past
the next 	oor� In some cases� cars are constrained to take a particular action� for
example� stopping at the next 	oor if a passenger wants to get o
 there� An agent
faces a decision point only when it has an unconstrained choice of actions�

������ Calculating Omniscient Reinforcements

Omniscient reinforcements are updated incrementally after every passenger arrival
event �when a passenger arrives at a queue�� passenger transfer event �when a pas�
senger gets on or o
 of a car�� and car arrival event �when a control decision is
made�� These incremental updates are a natural way of dealing with the disconti�
nuities in reinforcement that arise when passengers begin or end waiting between a
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car�s decisions� e�g�� when another car picks up waiting passengers� The amount of
reinforcement between events is the same for all the cars since they share the same
objective function� but the amount of reinforcement each car receives between its
decisions is di
erent since the cars make their decisions asynchronously� There�
fore� each car i has an associated storage location� R!i"� where the total discounted
reinforcement it has received since its last decision �at time d!i"� is accumulated�

At the time of each event� the following computations are performed� Let t� be
the time of the last event and t� be the time of the current event� For each passenger
p that has been waiting between t� and t�� let w��p� and w��p� be the total time
that passenger p has waited at t� and t� respectively� Then for each car i�

�R!i" �
X
p

e���t��d�i���
�

�	
�

�w��p�

��
�

w�
��p�

�
�� e���t��d�i���

�

�	
�

�w��p�

��
�

w�
��p�

�
��

������ Calculating Online Reinforcements

Online reinforcements are updated incrementally after every hall button event �sig�
naling the arrival of the �rst waiting passenger at a queue or the arrival of a car
to pick up any waiting passengers at a queue� and car arrival event �when a con�
trol decision is made�� We assume that online reinforcements caused by passengers
waiting at a queue end immediately when a car arrives to service the queue� since
it is not possible to know exactly when each passenger boards a car� The Poisson
arrival rate � for each queue is estimated as the reciprocal of the last inter�button
time for that queue� i�e�� the amount of time from the last service until the button
was pushed again� However� a ceiling of  � � ���� passengers per second is placed
on the estimated arrival rates to prevent any very small inter�button times from
creating huge penalties that might destabilize the cost�to�go estimates�

At the time of each event� the following computations are performed� Let t� be
the time of the last event and t� be the time of the current event� For each hall
call button b that was active between t� and t�� let w��b� and w��b� be the elapsed
time of button b at t� and t� respectively� Then for each car i�

�R!i" � e���t��d�i��
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������ Making Decisions and Updating Q�Values

A car that is in motion between 	oors generates a car arrival event when it reaches
the point where it must decide whether to stop at the next 	oor or continue past
the next 	oor� In some cases� cars are constrained to take a particular action�
for example� stopping at the next 	oor if a passenger wants to get o
 there� An
agent faces a decision point only when it has an unconstrained choice of actions�
The algorithm used by each agent for making decisions and updating its Q�value
estimates is as follows�

�� At time tx� observing state x� car i arrives at a decision point� It selects an
action a using the Boltzmann distribution over its Q�value estimates�

Pr�stop� �
eQ�x�cont��T

eQ�x�stop��T � eQ�x�cont��T �

where T is a positive �temperature� parameter that is �annealed� or decreased
during training� The value of T controls the amount of randomness in the se�
lection of actions� At the beginning of training� when the Q�value estimates are
very inaccurate� high values of T are used� which give nearly equal probabilities
to each action� Later in training� when the Q�value estimates are more accurate�
lower values of T are used� which give higher probabilities to actions that are
thought to be superior� while still allowing some exploration to gather more in�
formation about the other actions� As discussed in section ���� choosing a slow
enough annealing schedule is particularly important in multi�agent settings�

�� Let the next decision point for car i be at time ty in state y� After all cars
�including car i� have updated their R!�" values as described in the last two
sections� car i adjusts its estimate of Q�x� a� toward the following target value�

R!i" � e���ty�tx� min
fstop�contg

 Q�y� ���

Car i then resets its reinforcement accumulator R!i" to zero�

�� Let x� y and tx � ty� Go to step ��

���� The Networks Used to Store the Q�Values

Using lookup tables to store the Q�values was ruled out for such a large system� In�
stead� we used feedforward neural networks trained with the error backpropagation
algorithm �Rumelhart et al� ������ The networks receive some of the state infor�
mation as input� and produce Q�value estimates as output� The Q�value estimates
can be written as  Q�x� a� ��� where � is a vector of the parameters or weights of the
networks� The exact weight update equation is�
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�� � �!R!i" � e���ty�tx� min
fstop�contg

 Q�y� �� ���  Q�x� a� ��"��
 Q�x� a� ���

where � is a positive learning rate or stepsize parameter� and the gradient��
 Q�x� a� ��

is the vector of partial derivatives of  Q�x� a� �� with respect to each component of
��
At the start of training� the weights of each network are initialized to be uniform

random numbers between �� and ��� Some experiments in this paper use separate
single�output networks for each action�value estimate� while others use one network
with multiple output units� one for each action� Our basic network architecture for
pure down tra
c uses �� input units� �� hidden sigmoid units� and � or � linear
output units� The input units are as follows�

� �� units� Two units encode information about each of the nine down hall but�
tons� A real�valued unit encodes the elapsed time if the button has been pushed
and a binary unit is on if the button has not been pushed�

� �� units� Each of these units represents a possible location and direction for
the car whose decision is required� Exactly one of these units will be on at any
given time� Note that each car has a di
erent egocentric view of the state of
the system�

� �� units� These units each represent one of the �� 	oors where the other cars
may be located� Each car has a �footprint� that depends on its direction and
speed� For example� a stopped car causes activation only on the unit corre�
sponding to its current 	oor� but a moving car causes activation on several
units corresponding to the 	oors it is approaching� with the highest activations
on the closest 	oors� No information is provided about which one of the other
cars is at a particular location�

� � unit� This unit is on if the car whose decision is required is at the highest
	oor with a waiting passenger�

� � unit� This unit is on if the car whose decision is required is at the 	oor with
the passenger that has been waiting for the longest amount of time�

� � unit� The bias unit is always on�

In section �� we introduce other representations� including some with more re�
stricted state information�

���� Parallel and Distributed Implementations

Each elevator car is controlled by a separate Q�learning agent� We experimented
with both parallel and decentralized implementations� In parallel implementations�
the agents use a central set of shared networks� allowing them to learn from each



�	

other�s experiences� but forcing them to learn identical policies� In totally decen�
tralized implementations� the agents have their own networks� allowing them to
specialize their control policies� In either case� none of the agents is given explicit
access to the actions of the other agents� Cooperation has to be learned indirectly
via the global reinforcement signal� Each agent faces added stochasticity and non�
stationarity because its environment contains other learning agents�

�� Results and Discussion

���� Basic Results Versus Other Algorithms

Since an optimal policy for the elevator group control problem is unknown� we mea�
sured the performance of our algorithm against other heuristic algorithms� including
the best of which we were aware� The algorithms were� SECTOR� a sector�based
algorithm similar to what is used in many actual elevator systems� DLB� Dynamic
Load Balancing� attempts to equalize the load of all cars� HUFF� Highest Unan�
swered Floor First� gives priority to the highest 	oor with people waiting� LQF�
Longest Queue First� gives priority to the queue with the person who has been
waiting for the longest amount of time� FIM� Finite Intervisit Minimization� a re�
ceding horizon controller that searches the space of admissible car assignments to
minimize a load function� ESA� Empty the System Algorithm� a receding horizon
controller that searches for the fastest way to �empty the system� assuming no new
passenger arrivals� FIM is very computationally intensive� and would be di
cult
to implement in real time in its present form� ESA uses queue length informa�
tion that would not be available in a real elevator system� ESA�nq is a version of
ESA that uses arrival rate information to estimate the queue lengths� For more
details� see Bao et al ������� RLp and RLd denote the RL controllers� parallel and
decentralized� The RL controllers were each trained on ������ hours of simulated
elevator time� which took four days on a ��� MIPS workstation� The results for
all the algorithms were averaged over �� hours of simulated elevator time to ensure
their statistical signi�cance� The average waiting times listed below for the trained
RL algorithms are correct to within ����� at a ��� con�dence level� the average
squared waiting times are correct to within ����� and the average system times are
correct to within ������ Table � shows the results for the tra
c pro�le with down
tra
c only�

Table � shows the results for the down�peak tra
c pro�le with up and down
tra
c� including an average of � up passengers per minute at the lobby� The
algorithm was trained on down�only tra
c� yet it generalizes well when up tra
c
is added and upward moving cars are forced to stop for any upward hall calls�

Table � shows the results for the down�peak tra
c pro�le with up and down
tra
c� including an average of � up passengers per minute at the lobby� This time
there is twice as much up tra
c� and the RL agents generalize extremely well to
this new situation�
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Table �� Results for down�peak pro
le with down tra�c only�

Algorithm AvgWait SquaredWait SystemTime Percent��� secs

SECTOR ���� ��� ���� ����
DLB ���� ��� ���� ����

BASIC HUFF ���� ��� ���� ����
LQF ���� ��� ���� ����
HUFF ���� ��� ���� ����
FIM ���� ��� ���� ����

ESA�nq ���� ��� ���� ����
ESA ���� ��� ���� ����

RLp ���� ��� ���� ����
RLd ���� ��� ���� ����

Table �� Results for down�peak pro
le with up and down tra�c�

Algorithm AvgWait SquaredWait SystemTime Percent��� secs

SECTOR ���� ���� ���� ����
DLB ���� ��� ���� ����

BASIC HUFF ���� ��� ���� ����
LQF ���� ��� ���� ����
HUFF ���� ��� ���� ����
ESA ���� ��� ���� ����
FIM ���� ��� ���� ����

RLp ���� ��� ���� ����
RLd ���� ��� ���� ����

Table �� Results for down�peak pro
le with twice as much up tra�c�

Algorithm AvgWait SquaredWait SystemTime Percent��� secs

SECTOR ���� ���� ���� �����
HUFF ���� ��� ���� ����
DLB ���� ��� ���� ����
LQF ���� ��� ���� ����

BASIC HUFF ���� ��� ���� ����
FIM ���� ��� ���� ����
ESA ���� ��� ���� ����

RLd ���� ��� ���� ����
RLp ���� ��� ���� ����
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One can see that both the RL systems achieved very good performance� most
notably as measured by system time �the sum of the wait and travel time�� a
measure that was not directly being minimized� Surprisingly� the decentralized RL
system was able to achieve as good a level of performance as the parallel RL system�

���� Analysis of Decentralized Results

In view of the outstanding success of the decentralized RL algorithm� several ques�
tions suggest themselves� How similar are the policies that the agents have learned
to one another and to the policy learned by the parallel algorithm% Can the results
be improved by using a voting scheme% What happens if one agent�s policy is used
to control all of the cars% This section addresses all of these questions�

First the simulator was modi�ed to poll each of the four decentralized Q�network
agents as well as the parallel Q�network on every decision by every car� and compare
their action selections� During one hour of simulated elevator time� there were a
total of ��� decisions required� The four agents were unanimous on ��� decisions
��� percent�� they split � to � on �� decisions �� percent�� and they split evenly on ��
decisions �� percent�� The parallel network agreed with ��� of the ��� unanimous
decisions ��� percent�� For some reason� the parallel network tended to favor the
STOP action more than the decentralized networks� though that apparently had
little impact on the overall performance� The complete results are listed in table ��

Table 	� Amount of agreement between decentralized agents�

Agents Saying Agents Saying Number of Parallel Parallel
STOP CONTINUE Instances Says STOP Says CONT

� � ��� ��� �
� � �� �� �
� � �� �� �
� � �� �� �
� � ��� � ���

While these results show considerable agreement� there are a minority of situations
where the agents disagree� In the next experiment the agents vote on which actions
should be selected for all of the cars� In the cases where the agents are evenly split�
we examine three ways of resolving the ties� in favor of STOP �RLs�� in favor of
CONTINUE �RLc�� or randomly �RLr�� The following table shows the results of
this voting scheme compared to the original decentralized algorithm �RLd�� The
results are averaged over �� hours of simulated elevator time on pure down tra
c�

These results show no signi�cant improvement from voting� In the situations
where the agents were evenly split� breaking the ties randomly produced results
that were almost identical to those of the original decentralized algorithm� This
seems to imply that the agents generally agree on the most important decisions�
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Table 
� Comparison with several voting schemes�

Algorithm AvgWait SquaredWait SystemTime Percent��� secs

RLc ���� ��� ���� ����
RLs ���� ��� ���� ����
RLr ���� ��� ���� ����

RLd ���� ��� ���� ����

and disagree only on decisions of little consequence where the action values are very
similar�
In the next experiment the agent for a single car selects actions for all the cars�

RL� uses the agent for car � to control all the cars� RL� uses the agent for car �� and
so on� The following table compares these controllers to the original decentralized
algorithm �RLd�� The results are averaged over �� hours of simulated elevator time
on pure down tra
c�

Table �� Letting a single agent control all four cars�

Algorithm AvgWait SquaredWait SystemTime Percent��� secs

RL� ���� ��� ���� ����
RL� ���� ��� ���� ����
RL� ���� ��� ���� ����
RL� ���� ��� ���� ����

RLd ���� ��� ���� ����

While agent � outperformed the other agents� all of the agents performed well
relative to the non�RL controllers discussed above� In summary� it appears that all
the decentralized and parallel agents learned very similar policies� The similarity of
the learned policies may have been caused in part by the symmetry of the elevator
system and the input representation we selected� which did not distinguish among
the cars� For future work� it would be interesting to see whether agents with input
representations that did distinguish among the cars would still arrive at similar
policies�

���� Annealing Schedules

One of the most important factors in the performance of the algorithms is the
annealing schedule used to control the amount of exploration performed by each
agent� The slower the annealing process� the better the �nal result� This is illus�
trated in table � and �gure � which show the results of one training run with each
of a number of annealing rates� The temperature T was annealed according to the
schedule� T � ��� 	 �Factor�h� where h represents the hours of training completed�
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Once again� the results were measured over �� hours of simulated elevator time�
Even though they are somewhat noisy due to not being averaged over multiple
training runs� the trend is still quite clear�

Each of the schedules that we tested shared the same starting and ending temper�
atures� Although the annealing process can be ended at any time with the current
Q�value estimates being used to determine a control policy� if the amount of time
available for training is known in advance� one should select an annealing schedule
that covers a full range of temperatures�

Table �� The e�ect of varying the annealing rate�

Factor Hours AvgWait SquaredWait SystemTime Pct��� secs

����� ��� ���� ��� ���� ����
����� ���� ���� ��� ���� ����
����� ���� ���� ��� ���� ����
����� ���� ���� ��� ���� ����
������ ����� ���� ��� ���� ����
������� ����� ���� ��� ���� ����
�������� ����� ���� ��� ���� ����

While gradual annealing is important in single�agent RL� it is even more im�
portant in multi�agent RL� The tradeo
 between exploration and exploitation for
an agent now must also be balanced with the need for other agents to learn in a
stationary environment and while that agent is doing its best� At the beginning of
the learning process� the agents are all extremely inept� With gradual annealing
they are all able to raise their performance levels in parallel� Tesauro ������ �����
����� notes a slightly di
erent but related phenomenon in the context of zero�sum
games� where training with self�play allows an agent to learn with a well�matched
opponent during each stage of its development�

���� Omniscient Versus Online Reinforcements

This section examines the relative performance of the omniscient and online rein�
forcements described in section ���� given the same network structure and tempera�
ture and learning rate schedule� As shown in table �� omniscient reinforcements led
to slightly better performance than online reinforcements� This should be of little
concern regarding the application of RL to a real elevator system� since one would
want to perform the initial training in simulation in any case� not only because of
the huge amount of experience needed� but also because performance would be poor
during the early stages of training� In a real elevator system� the initial training
could be performed using a simulator� and the networks could be �ne�tuned on the
real system�
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Figure �� The e�ect of varying the annealing rate�

Table �� Omniscient versus online reinforcements�

AvgWait SquaredWait SystemTime Pct��� secs

Omniscient ���� ��� ���� ����
Online ���� ��� ���� ����

���� Levels of Incomplete State Information

If parallel or decentralized RL were to be implemented in a real elevator system�
there would be no problem providing whatever state information was available to
all of the agents� However� in a truly decentralized control situation� this might not
be possible� This section looks at how performance degrades as the agents receive
less state information�
In these experiments� the amount of information available to the agents was varied

along two dimensions� information about the hall call buttons� and information
about the location� direction� and status of the other cars�
The input representations for the hall call buttons were� REAL� consisting of ��

input units� where two units encode information about each of the nine down hall
buttons� A real�valued unit encodes the elapsed time if the button has been pushed
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and a binary unit is on if the button has not been pushed� BINARY� consisting of
� binary input units corresponding to the nine down hall buttons� QUANTITY�
consisting of two input units measuring the number of hall calls above and below the
current decision�making car� and NONE� with no input units conveying information
about the hall buttons�

The input representations for the con�guration of the other cars were� FOOT�
PRINTS� consisting of �� input units� where each unit represents one of the ��
	oors where the other cars may be located� Each car has a �footprint� that de�
pends on its direction and speed� For example� a stopped car causes activation
only on the unit corresponding to its current 	oor� but a moving car causes activa�
tion on several units corresponding to the 	oors it is approaching� with the highest
activations on the closest 	oors� Activations caused by the various cars are addi�
tive� QUANTITY� consisting of � input units that represent the number of upward
and downward moving cars above and below the decision�making car� and NONE�
consisting of no input units conveying information about the hall buttons�

All of the networks also possessed a bias unit that was always activated� �� hidden
units� and � output units �for the STOP and CONTINUE actions�� All used the
decentralized RL algorithm� trained for ����� hours of simulated elevator time
using the down�peak pro�le and omniscient reinforcements� The temperature T

was annealed according to the schedule� T � ��� 	 �������h� where h is the hours
of training� The learning rate parameter was decreased according to the schedule�
LR � ���� 	 ��������h�

The results shown in table �� are measured in terms of the average squared
passenger waiting times over �� hours of simulated elevator time� They should be
considered to be fairly noisy because they were not averaged over multiple training
runs� Nevertheless� they show some interesting trends�

Table ��� Average squared wait times with various levels of incomplete state information�

Hall Location of Other Cars
Buttons

Footprints Quantity None
Real ��� ��� ���
Binary ��� ��� ���
Quantity ��� ��� ���
None ���� ��� ���

Clearly� information about the hall calls was more important than information
about the con�guration of the other cars� In fact� performance was still remarkably
good even without any information about the other cars� �Technically speaking�
some information was always available about the other cars because of the con�
straint that prevents a car from stopping to pick up passengers at a 	oor where
another car has already stopped� No doubt this constraint helped performance
considerably��
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When the hall call information was completely missing� the network weights had
an increased tendency to become unstable or grow without bound and so the learn�
ing rate parameter had to be lowered in some cases� For a further discussion of
network instability� see section ����
The way that information was presented was important� For example� being sup�

plied with the number of hall calls above and below the decision�making car was
more useful to the networks than the potentially more informative binary button
information� It also appears that information along one dimension is helpful in
utilizing information along the other dimension� For example� the FOOTPRINTS
representation made performance much worse than no car information in the ab�
sence of any hall call information� The only time FOOTPRINTS outperformed the
other representations was with the maximum amount of hall call information�
Overall� the performance was quite good except in the complete absence of hall

call information �which is a signi�cant handicap indeed�� and it could be improved
further by slower annealing� It seems reasonable to say that the algorithm degrades
gracefully in the presence of incomplete state information in this problem�
In a �nal experiment� two binary features were added to the REAL�FOOTPRINTS

input representation� They were activated when the decision�making car was at the
highest 	oor with a waiting passenger� and the 	oor with the longest waiting pas�
senger� respectively� With the addition of these features� the average squared wait
time decreased from ��� to ���� so they appear to have some value�

���� Practical Issues

One of the biggest di
culties in applying RL to the elevator control problem was
�nding the correct temperature and learning rate parameters� It was very helpful to
start with a scaled down version consisting of � car and � 	oors and a lookup table
for the Q�values� This made it easier to determine rough values for the temperature
and learning rate schedules�
The importance of focusing the experience of the learner into the most appropri�

ate areas of the state space cannot be overstressed� Training with trajectories of
the system is an important start� but adding reasonable constraints such as those
described in section ����� also helps� Further evidence supporting the importance of
focusing is that given a choice between training on heavier or lighter tra
c than one
expects to face during testing� it is better to train on the heavier tra
c� This type
of training gives the system more experience with states where the queue lengths
are long and thus where making the correct decision is crucial�

���� Instability

The weights of the neural networks can become unstable� their magnitude increas�
ing without bound� Two particular situations seem to lead to instability� The
�rst occurs when the learning algorithm makes updates that are too large� This
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can happen when the learning rate is too large� or when the network inputs are
too large �which can happen in very heavy tra
c situations�� or both� The sec�
ond occurs when the network weights have just been initialized to random values�
producing excessively inconsistent Q�values� For example� while a learning rate
of ���� is suitable for training a random initial network on moderate tra
c ����
passengers�hour�� it very consistently brings on instability in heavy tra
c �����
passengers�hour�� However� a learning rate of ���	 keeps the network stable even
in heavy tra
c� If we train the network this way for several hundred hours of eleva�
tor time� leading to weights that represent a more consistent set of Q�values� then
the learning rate can be safely raised back up to ���� without causing instability�

��	� Linear Networks

One may ask whether nonlinear function approximators such as feedforward sig�
moidal networks are necessary for good performance in this elevator control prob�
lem� A test was run using a linear network trained with the delta rule� The linear
network had a much greater tendency to be unstable� In order to keep the weights
from blowing up� the learning rate had to be lowered by several orders of magnitude�
from ���	 to ����� After some initial improvement� the linear network was unable
to further reduce the average TD error� resulting in extremely poor performance�
This failure of linear networks lends support to the contention that elevator control
is a di
cult problem�

�� Discussion

Both the parallel and distributed multi�agent RL architectures were able to outper�
form all of the elevator algorithms they were tested against� The two architectures
learned very similar policies� Gradual annealing appeared to be a crucial factor
in their success� Training was accomplished e
ectively using both omniscient and
online reinforcements� The algorithms were robust� easily generalizing to new sit�
uations such as added up tra
c� Finally� they degraded gracefully in the face of
increasing levels of incomplete state information� Although the networks became
unstable under certain circumstances� techniques were discussed that prevented
the instabilities in practice� Taken together� these results demonstrate that multi�
agent RL algorithms are very powerful techniques for addressing very large scale
stochastic dynamic optimization problems�
A crucial ingredient in the success of multi�agent RL is a careful control of the

amount of exploration performed by each agent� Exploration in this context means
trying an action believed to be sub�optimal in order to gather additional information
about its potential value� At the beginning of the learning process� each RL agent
chooses its actions randomly� without any knowledge of their relative values� and
thus all the agents are extremely inept� However� in spite of the noise in the
reinforcement signal caused by the actions of the other agents� some actions will
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begin to appear to be better than others� By gradually annealing �or lowering�
the amount of exploration performed by the agents� these better actions will be
taken with greater frequency� This gradually changes the environment for each of
the agents� and as they continue to explore� they all raise their performance levels
in parallel� Even though RL agents in a team face added stochasticity and non�
stationarity due to the changing stochastic policies of the other agents on the team�
they display an exceptional ability to cooperate with one another in learning to
maximize their rewards�
There are many areas of research in both elevator group control and general

multi�agent RL that deserve further investigation� Implementing an RL controller
in a real elevator system would require training on several other tra
c pro�les�
including up�peak and inter�	oor tra
c patterns� Additional actions would be
needed in order to handle these tra
c patterns� For example� in up�peak tra
c it
would be useful to have actions to speci�cally open and close the doors or to control
the dwell time at the lobby� In inter�	oor tra
c� unconstrained �up� and �down�
actions would be needed for the sake of 	exibility� The cars should also have the
ability to �park� at various 	oors during periods of light tra
c�
It would be interesting to try something other than a uniform annealing schedule

for the agents� For example� a coordinated exploration strategy or round�robin type
of annealing might be a way of reducing the noise generated by the other agents�
However� such a coordinated exploration strategy may have a greater tendency to
become stuck in sub�optimal policies�
Theoretical results for sequential multi�agent RL are needed to supplement the

results for non�sequential multi�agent RL described in section ���� Another area
that needs further study is RL architectures where reinforcements are tailored to
individual agents� possibly by using a hierarchy or some other advanced organi�
zational structure� Such local reinforcement architectures have the potential to
greatly increase the speed of learning� but they will require much more knowledge
on the part of whatever is producing the reinforcement signals �Barto� ������ Fi�
nally� it is important to �nd e
ective methods of allowing the possibility of explicit
communication among the agents�

�� Conclusions

Multi�agent control systems are often required because of spatial or geographic
distribution� or in situations where centralized information is not available or is not
practical� But even when a distributed approach is not required� multiple agents
may still provide an excellent way of scaling up to approximate solutions for very
large problems by streamlining the search through the space of possible policies�
Multi�agent RL combines the advantages of bottom�up and top�down approaches

to the design of multi�agent systems� It achieves the simplicity of a bottom�up
approach by allowing the use of relatively unsophisticated agents that learn on the
basis of their own experiences� At the same time� RL agents adapt to a top�down
global reinforcement signal� which guides their behavior toward the achievement of
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complex speci�c goals� As a result� very robust systems for complex problems can
be created with a minimum of human e
ort�
RL algorithms can be trained using actual or simulated experiences� allowing

them to focus computation on the areas of state space that are actually visited
during control� making them computationally tractable on very large problems� If
each of the members of a team of agents employs an RL algorithm� a new collective

algorithm emerges for the group as a whole� This type of collective algorithm allows
control policies to be learned in a decentralized way� Even though RL agents in a
team face added stochasticity and non�stationarity due to the changing stochastic
policies of the other agents on the team� they display an exceptional ability to
cooperate with one another in maximizing their rewards�
In order to demonstrate the power of multi�agent RL� we focused on the di
cult

problem of elevator group supervisory control� We used a team of RL agents�
each of which was responsible for controlling one elevator car� Results obtained in
simulation surpassed the best of the heuristic elevator control algorithms of which
we are aware� Performance was also very robust in the face of increased levels of
incomplete state information�
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