Chapter 14

STABILIZED METHODS

14.1 Introduction

We have employed several weighted residual methods to formulate our finite
element solutions. Most of the time we have used the standard Galerkin method where
we multiply a residual error by a special weighting function. Recall that within an
element we assumed a spatial interpolation for the approximate solution as

x 0Q°: u(x) = H(x) U® = JZH,- (x) U} (14.1)

which in turn defines the residual error
R(H(x) #0 (14.2)

The standard Galerkin method (sometimes calledBtienov-Galerkin)is said to be a
process that "makes the spatial approximation orthogonal to the residual error" by
requiring the weighed system to be

where the weights are defined to be
W;(x) = H;(x), (14.4)

the element spatial interpolation associated with node

The Galerkin method works well for elliptical differential equations. However, when
it was applied to other classes of differential equations it was often found to vyield
"unstable" solutions, i.e., solutions that exhibit non-physical spatial oscillations.
Generally the standard Galerkin approach is seen to break down in problems with strong
boundary layer effects. The analytical approach to such problems is usually called
singular perturbation theory. Typically such problems have a data dependent coefficient
multiplying the highest derivative. In common special cases that coefficient approaches
zero and the nature of the equation changes because of the loss of the highest derivative
term. Alternatively, one can view it as a reduction in the number of boundary conditions
which causes a very rapid change in the solution (i.e., a boundary layer) near the region
of the "lost" boundary condition data. Some analysts divide the differential equation by
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Finite Elements, Stabilized Methods 407

the coefficient multiplying the highest derivative term and thereby create an increased
emphasis on the lower order derivative terms in the equation. One of the first studies to
successfully apply a new finite element theory "for second order problems with
significant first derivatives" was the use of fetrov-Galerkinmethod by Christie, et al,

in 1976 [3]. Since then the Petrov-Galerkin methods [15, 25] have generally come to be
known as "stablized" formulations because they prevent the spatial oscillations and
sometimes yield nodally exact solutions where the classical Galerkin method would fail
badly. They are also very important because they allow equal order element interpolation
for mixed nodal variables, such as pressure and velocity, that otherwise would not be
possible.

14.2 Petrov-Galerkin Method

The Petrov-Galerkin method is assumed to be more general because it does not
restrict the weights to just the special case of the spatial distribution of the approximating
solution, but adds some additional terms to it:

where theP; denotes Pertov or "stabilization" terms[9, 23]. In Eq. (14.5) the
multipiler was introduced to recognize that one would often need to account for the
difference in units betweeW,; and P; and to scale their relative importance in the
solution. Here we will refer to each suclhterm as a "stabilization parameter” [23, 24].
If we are going to allow the weighting of the residual error to be more general than the
classic Galerkin approach we are faced with selecting a rational for the additional
weights. Some methods have been tried and shown to work well for some classes of
equations, such as thadvective-diffusionequation [15]. Since advection means "to
carry along" it often occurs in modeling various transport phenomena. One of the
common applications is heat transfer with mass flow. That is usually referred to as a
convection-diffusion problem. For such problem classes the Petrov-Galerkin method is
often wused to create "upwind elements" as one way to stabilize the
solution [2,4,5,7, 10, 11, 16]. One can find many articles on those subjects, but most
employ linear elements and zero source terms. These simplifications may hide more
general concepts.

Consider a typical application such as convective-diffusive heat transfer governed by

pc(g—f +v-:Op = OKOp +Q (14.6)

wherev denotes a given velocity vector fiel@,is the volumetric source and the material
properties p, ¢, K are the mass density, specific heat and thermal conductivities,
respectively. We select a generalized weight function

w=(¢+p) (14.7)

where p(x) is the new Petrov or stabilization term(s). Then we invoke the method of
weighted residuals:
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[0+ PLoc(GE v+ 09) = IKDg) - Qo =0 (14.9

Usually ¢(x) is taken as continuous across element boundaries and thus allows one
to employ integration by parts to yield the terms given earlier in the classical Galerkin
form. The Petrov termp(x), may or may not be continuous across element boundaries.
Usually it is not continuous and we can not reduce the order of the derivatives in its
integrals. In either case, we can view this expanded integral form as

[Classical Galerkin + [Stablization Terms=0 (14.9)

where the stabilization term here is
0
s =z[ p(X)[pC(a—(tp + v+ Hg) - O(KOgp) - QIdQ (14.10)

which is clearly zero for the exact solution. This is a typical example of a Petrov-
Galerkin approach. Note that unless integration by parts can be employed this term
retains the highest derivative found in the original equation. That would either increase
the interpolation inter-element continuity requirement, or restrict the integral evaluation
to each of the element domains rather that the full donainThe latter occurs, for
example, when one includes a least squares weight (partial derivative of the residual error
with respect to the unknowns) as a Petrov term [13]. This leads to a Galerkin/Least
Squares (GLS) stabilization process.

It should be noted that in most low order elements the second derivatives are zero
and thus the diffusion term is often omitted in the stabilization calculation. However, the
second derivatives can always be estimated using patch methods or other techniques
when using an iterative solution.

Since the Galerkin process works well in most cases, we review its properties and
seek a change in them that may better capture advective-diffusion type solutions. The
most common general form of the Petrov-Galerkin method is to pick the weights as

W, =h, +aF, (14.11)

where the sum of the integrals of theis zero. Some authors, such as Kondo et al [16],
like to include additional terms in the summation in an effort to awpthe numerical
accuracy, but others include different residuals to provide physical insight to the
stabilization terms [21].

Continuous Petrov Forms

Huebner and Thornton [12] present an example formulation wherg ;{x¢ are
picked to be continuous across the element boundaries and thus they are able to apply
integration by parts, over the entire domain, to the new terms and retain the @%e of
interpolation. Others have used similar approaches, such a element bubble functions, but
most applications involve functions that are discontinuous across the inter-element
boundaries.

Discontinuous Petrov Forms
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In most advection applications behavior in the streamline direction is usually more
important than in the perpendicular "cross-wind" direction. It is possible to bias the
Petrov weight by defining it to be the scalar result of the dot product of a unit vector,
n=-v/ [Iv]|, in the upwind streamline direction (obtained from the velocity vegtor
and some other assumed vector function,G@y):

p(X) = ny(x) * G(X) . (14.12)

This common special case is know as the Streamline Upwind Petrov-Galerkin
(SUPG) method [1, 10, 11, 13]. The vector function is usually taken as the gradient of the
solution,G(x) = LOg(x), whereL is constant, with length dimension, introduced to keep
the units consistent with those @f Since the gradient is usually discontinuous between
elements, we can not use integration by partp(ef over the solution domain.

The goal of the Streamline Upwind Petrov-Galerkin is to stabilize the solution by
adding information to include a bias on gradients in the flow direction. For a given
velocity v this is done by defining the SUPG weight function to be
whereh is a measure of the element size, and from one-dimensional studes be
related to the local element Peclet number so as to obtain optimal accuracy [1]. In terms
of the notation of Eq. (14.5), we would hauve= ah/||v||, andP; = v-AH;. Tezduyar
and Osama [24] have given mathematical norm definitions for establishing both element
and nodak values. Other definitions afwill be considered later.

Recall that the element interpolations based on Lagrangian methods have the
property that at any point in space

JZ Hi(x) =1 (14.14)

Likewise, any gradient in the, spatial direction of the @lyesum is the null vector

0H;
—(xX)=0 14.15
> o 9=, (14.15)
where typically 1< y < 3. Recall here that the units have changed by the introduction of
a length in the denominator due to taking a spatial derivative. For future reference
consider a scalar zero term created by dotting this summation with a unit nectan
the spacex

N,
géj a—xy’Epy(x) -0 (14.16)

Typically, we wish to consider an upwind bias and use the velocity vector to define the
unit vector as

\Y

n =2 14.17
' (4410

and then the reference lengthmay be taken as some appropriate element distance.
Finally, we multiply the result by a constank@ < 1 to indicate the relative amount of
"upwind" emphasis. From this we see that i§ constant

Draft — 6/10/02 © 2002 J.E. Akin. All rights reserved.



410 J.E. Akin

zahDHJ ”V” =0 (14.18)

so that
JZW,-(X) = % Hj(x)=1 (14.19)

as in the standard Galerkin form. Typically,s picked to give the optimal result for a

1-D solution. That optimal value is usually defined in a collocation sense in that it
exactly satisfies the PDE at a point in a uniform grid (for special choic€8.ofThe
appearance oh in the stabilization term, of Eq. (14.13), has lead several authors to
propose ways to evaluate the relevant element length to be employed. We will review
some of the methods in the next section and later relate them quantitatively to other
length measures related to turbulence modeling.

14.3  Geometric Measures of Element and Nodal Lengths far

The stabilization parameters, often involve definitions that require a local length
in the streamline direction related to the element size. Most researchers assume an
average value over the element [1] while others allow for different lengths (ealdes)
to be associated with each node of the element[24]. We will utilize 1-D and 2-D
elements to illustrate some of the available geometric constructidnskdr advection-
diffusion problems formulated with 1-D linear elements it was shown that to obtain
nodally exact solutionk was the element length aq@ = 0 [1]. The same study showed
an extension to quadrilaterals as illustrated in Fig. 14.2.1. Since the stabilization term
was to be biased in the streamline direction it is commonly thought that the length
measure should also take into consideration the flow direction. It is denoted by the unit
vectorn in the figure. There the lengths of the eleméngndB, are established in the
local coordinate directions. They are dotted with the unit vector in the streamline
direction and the sum of the absolute value of the two distances is taken as the element
size. A similar process can be used for linear hexahedra[l,10], and for linear
triangles [11]. These geometric approaches have been used in many stabilization studies
with linear elements. For higher degree element interpolations there are fewer
suggestions for geometric approaches to defihifg 6]. Here we will introduce some
approaches for higher order Lagrangian elements in 1-D, 2-D, and 3-D. These new
approaches could be extended to p-adaptive elements by using weights proportional to the
number of unknowns per node.

Rather than use local coordinate directions which depend on the element type, but
not its degree, one can always define geometric measures by beginning with the
collection of relative position vectors from the element centroid to each of its nodes. That
allows for various length projections in the streamline and cross-flow directions.

A geometric process similar to that of Brooks and Hughes [1] that establishes an
element value length is shown in Fig. 14.2.2. There vectors are established at each node
to create a relative nodal streamline directional distance from the element center. Those
nodal distances can be employed to define a maximum element distance by using the
absolute value of the most positive and negative nodal distances, as shown in 2c. An
average element measure can be obtained by averaging the positive (downwind) distances
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a) Local coordinate vectors b) Streamline components

- o

h=|h_al + h_bl| ¢) Mean downwind distance

Figure 14.2.1 Classic quadrilateral element downwind distance

and averaging the negative (upwind) distances, as shown in 2d. Note that the number of
nodes considered to be downwind (and upwind) will vary with the direction biit

there will always be at least one downwind node when defined in this way. The same
process works for all element types. The lengths for a linear triangular element are given
in Fig. 14.2.3

Being vector based this geometric process automatically extends to 3-D space. For
higher degree Lagrangian elements it allows for curvilinear shapes and indirectly
accounts for the change in degree of Lagrangian elements. To illustrate these definitions
for a quadratic element we begin in 1-D, in Fig. 14.2.4, where we compare linear and
guadratic line elements. One can consider nodal vector lengths, in 4c, or scalar nodal
distances, in 4d. For advective-diffusion in 1-D we use a stabilization paramédtased
on the element lengthl., to obtain nodally exact solutions [1]. Codina, et al[4],
conducted a similar study for 1-D quadratic elements and showed that to obtain nodally
exact solutions the term for the center node is approximately half that of the end nodes.
For infinite Peclet numbers (pure advection) the center naslexactly half the two end
noder values. Note that in Fig. 14.2.4d the center node measure is exactly half the end
node values.

As a final geometric example for higher degree elements consider the quadratic
guadrilateral element in Fig. 14.2.5. The generalization for the average downwind
distance vector to the element cenderalways depends on the number of upwind nodes
which will vary in turn with the direction of the streamlime,Being based on an integer
value count that upwind average can show localized jumps elsanges direction.
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a) "Radial" position vectors b) Nodal downwind distances, NDD

[(C+D)-(A+B)]/2

¢) Maximum rule length, MD d) Average rule length, AD
Figure 14.2.2 Quadrilateral element downwind distance options

a) "Radial" position vectors b) Nodal downwind distances, NDD

¢) Maximum rule length, MD d) Average rule length, AD
Figure 14.2.3 Triangular element downwind distance options
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b=|B|+]J|=L c=|C|+N|=L/2
b=B|+[J=L

d) Nodal downwind lengths
Figure 14.2.4 Linear (left) and quadratic (right) line element measures

Alternatively, the vectod could be taken as the negative of the largest upwind vector at
the element nodes«G in 5b)

14.4  Review of SUPG Concepts

There are numerous publications on the mathematics and application of the
SUPG of Brooks and Hughes [1]. Several arguments have been given to describe why
the stabilization method drastically ingme the results of finite solutions of non-elliptical
problems. Here we will review some of the concepts but the main point of this chapter is
how we implement these methods when needed. We begin our review of some of the
interpretations of how these stabilization methods work with the usual approach of the
one-dimensional SUPG which has been proven to exactly satisfy the homogeneous form
(Q =0) of Eq. (14.19) at all nodes in a uniform mesh for all Peclet numbers. Consider
the one-dimensional model equation

dp  0%p
Tk~ = 14.20
u kaX2+Q 0, x0O, L[ ( )
satisfying the boundary conditions of

0=, ol)=q (14.21)

whereu is the given flow velocityk is the diffusivity coefficient, an€) is the internal
source per unit length. The solution i(x) is governed by the global Peclet number Pe
= uL/k, and the grid Peclet numbgr,= uh/(2k), whereh is the element size. F =0
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g
a) "Radial" position vectors b) Nodal downwind distances
e -
J=-(D+E+F+G)/4 =
G
c) Average downwind to center d) Adjusted downwind vectors

Figure 14.2.5 Assigning quadratic quadrilateral nodal downwind vectors

and u and k constant, the exact solution fap, =0 and ¢ =1 is given by

p(x)=(1- ePeX/L)/(l—ePe). The classic Galerkin method solutions of this problem
appear under-diffuse while most upwind methods appear over-diffuse.

Continuous Petrov Form

Only if F in Eq. 14.11 is continuous then the element matrix forms can be written,
after integration by parts as the conduction or diffusion parts:

OW'™ AH
S = (|’ % k—d (14.22)
OHT oF OH
[[a k—d J’—k—d (14.23)
X 0X

which matches the classical form onlyif= 0 or if F is picked to force the last integral
to vanish. [12] Otherwise there will be an additional new diffusion contributionSg@nd
will usually become unsymmetric. The source resultant is
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CS = [[wTde: E[ HTQdx+ a ([FTQdX (14.24)

which forQ # 0, modifies the nodal distribution of the source resultant. We recall that for
any source distributionQ(x), the sum of all the terms in the first integral (HfQ )
accounts for the total source effects. This means that the sum of all the terms from the
second integral involvels, must vanish. For a consta@tthat means that the sum of the
F terms must vanish. If we had known fluxes on the boundary they would be coupled to
W (and thus tarF if it is continuous) like the volumetric source matrices were.

The new moving, or advection, contribution is the matrix

oH
S = JwTu 5 O (14.25)

which splits into
oH oH
sﬁ:[[HTua—de+at|’FTua—de (14.26)

which is the standard non-symmetric form plus a new array dependifgvamich in
general would also be non-symmetric. It is much more common to employ Petrov forms
that are discontinuous at the inter-element boundaries.

Discontinuous Petrov Forms
If, and only if, we consider a special case wheris proportional to the gradient of
the shape functiondd (say F = cdH /dx) will the new Petrov-Galerkin advection

contribution due tau be a symmetrical matrix and be almost identical to the standard
diffusion matrix;

T, " = i
a[[F u=s dx ai 3% Y ox dx. (14.27)

Thus some people like to think of this common case as an element designed to increase
the numerical diffusion in a controlled fashion.

When the SUPG is applied to this problem for linear finite elements, it gives nodally
exact results by picking the optimal diffusion to add to the system. The SUPG is usually
demonstrated with the finite difference pattern it produces when elements are assembled
at a typical interior node of a uniform mesh [1]. Here we will take the different approach
and look directly at the element matrices that result if the residual vanishes on each
element. For the case Qf=0;

yO0-1 10 k01 -10 gquhO1 -10H

0 O+ — O O+ - 0O Me=0 (14.28)

where

a = Coth (Pe)- 1/Pe (14.29)
is the optimal upwind coefficient.
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The first two matrices are the classical Galerkin advection and diffusion matrices,
and the third square matrix is viewed as the added SUPG diffusion necessary for nodally
exact solutions. While the third term is intended to emphasize the added diffusion, its
units suggest that it could be added to the first matrix for the classical advection term. If
we do that and apply the Petrov-Galerkin to a constant source@ertimnen we see an
alternate view of the element matrices (when node 2 is downwind) is

EhEt—1+a) (1-a)0 k01 ‘1@54”1%_“_(98(1'“)% (14.30)

Il m

which serves as a clear reminder that the Petrov-Galerkin method also significantly
influences the resultant-source vector. A system assembled from these element matrices
gives the nodally exact result for any Two common special cases are easily observed;

a - 1 (Pe- oo) for the maximum upwind correction

O 0O k01 -1000yp O OoO

E%u D_g gm % D_i iD]] DZ: 0= ZZQ Dcl)D (14.31)

g= o U U (0¥ 00
This lets us think of the upwinding effects as a strong weighing the upwind rows of the
element source and the advection matrices rather than modifying the diffusion. This
gives some insight into why, for large Peclet numbers, the upwind method of Rice and
Schnipke [18] (and its degenerate form by Shemirani and Jambunathan [20] ), which
deletes the upwind rows of the convection matrix, works so well for low-order multi-
dimensional elements f@ = 0 (and Pe- o).

However, we are interested in a general process for higher order (e.g., p-adaptive)
elements, so we will consider the change from Eq. (14.27) when a quadratic line element
is employed with nodes 2 and 3 being downwind. We make the common assumption that
a is a single scalar term. Again we view the diffusion matrix as unchanged from the
standard Galerkin form (with zero row and column sums), where node 2 is the interior
node:

K o7 -8 10
Sc= 3 5—8 16 —8% (14.32)
0l -8 70
but the source vector due @has an additional term
i, 0 O_g0 H 0
oh0'0 4oH D00 onol™ %@
Co= ? Mo+ — 5 nong= 3 0o 4 0 (14.33)
10 U el U1 + 60 U
0o 0o O H 0

From this we see that the upwinding has a strong effect on the "corner" sources but no
effect on the interior (and, thus, another downwind) node. Of course, the total source
contributed Qh) is still accounted for at all values ef (and Pe) since the sum of the
coefficients multiplying it is unity.

The standard advection matrix for this quadratic element is the Galerkin form (with
Zero row sums)
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L0834 -0
S 5—4 0 4% (14.34)
0l -4 30

and the SUPG correction is obtained by ugingauh/2 in S, ( from Eq. (14.25)). The
combined upwind element matrices for the SUPG method are

EUE(?a—B) (4-8a) (@-1O |, O7 -8 100 thl GGB
0(-4-8z)  16a (4—8a)g+%g—8 16 8ip=--0 4 (1435)
. E(1+a) (-4-8a) (3+7a)[ ol -8 7 Bl+6ag

which is the classic Galerkin form when=0. From Eq. (14.28) we see that for higher
order elements, the upwinding effects on advection and source terms are not as simple as
the effect ofa in Eqg. (14.23) may have implied. For maximum upwindiag=(1) this
becomes

004 -4 oo 07 -8 10 thsm
%5—12 16 -4l - e 16 -80p=="0 4 (14.36)
00 2 -12 100 ol -8 7m B?B

The alove single element based term for the quadratic element no longer gives
exact results at the nodes, even@= 0. To accomplish that Codinat al. [4] have
shown that a nodal based approached may be needed with one upwind congtant,
the two "corner" nodes and a secogdpr the interior node. They show the constants to
be

B = (coth (Pe/2)- 2/Pe)/2,

14.37

_ (3+ 3 Pep) tanh (Pe)- (3Pe+ PE B) ( )
- (2 - 3Btanh(Pe))Pe

which gives ag that is about half ofr for most Pe, ang® — a /2 for Pes o0. Their

form from an element matrix viewpoint is

00@a-3) (4-8) (@-1)o O
! (-4-83) 168  (4-8p)+S0=Cq (14.38)
00 @+a) (-4-8a) (B+7a) 0

which, compared to Eq. (14.35), reduces the upwind effect on the interior node. If we use
the gross approximation that= a/2 (which is exact for Pe o), we get
D(?a 3) (4-8) (¢-1)0O
S.= - D4(—1 a) 8  4(1-a) B (14.39)

GD 1+a) (-4-8a) (B+7a)[

which has zero row sums, but not zero column sums. In the limit-efddethis gives
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,04 -4 oC
S.=¢ 8—8 8 og (14.40)
02 -12 10p

which again significantly differs from the Galerkin form of Eq. (14.27) and the single
element basedr form given in Eq. (14.29). This short review of SUPG concepts
suggests that the extension to higher order elements may, in general, benefit from
different upwind coefficients for corner nodes, edge nodes, and internal nodes.

14.5 One-dimensional Example

The application of the SUPG for linear line elements is, as expected, the most
common way to illustrate the process. There are aspects of the computation that are
obtained by inspection that require little extra programming in general. It is clear that the
reference length to be used in calculating the Peclet number is simply the length of the
element. Likewise, the gradient of the solution, &hdin the x-direction is also the
gradient in the direction tangent to the streamline. Finally, since the second derivatives of
such approximations are zero (unless iterative results are used) one avoids having to bring
into the analysis the consistent information on second derivatives that occur in the SUPG
theory.

For very high Peclet numbers the governing equation needs to be modeled
analytically with what is known as "singular perturbation theory". Usually such problems
involve a parameter (here 1/Pe) associated with the highest order derivative in the
differential equation. As that parameter approaches zero one has essentially a lower order
differential equation with more boundary conditions than the reduced equation requires.
In other words a thin "boundary layer" develops in a part of the solution domain near the
redundant boundary condition and the solution must change very rapidly in that small
region as it tries to satisfy the original higher order derivative terms. When such a
problem is approximated by a classic Galerkin finite element solution a least squares
spatial response develops to try to capture the very sharp gradients in thin boundary layer.
While it may do that, it over shoots the spatial solution in the region adjacent to the
boundary layer and gives huge errors, or physically impossible results, as it oscillates
about the true solution in the main domain that is reasonably modeled by the lower order
differential equation. This type of behavior should not come as a surprise since we have
changed to a new class of differential equation that is unlike the elliptical one used in
most of our examples. Here the system is parabolic in nature and a polynomial
approximation may not be the best choice for our finite element model. Since the
response is basically exponential in nature near the boundary layer we should consider
using exponential interpolation functions or adding new terms to our solutions to
accurately dampen out the incorrect responses. The SUPG approach does the latter. The
non-polynomial interpolations would also work, but tend to be expensive to compute and
sensitive to the word length of the computer employed.

We begin with a classic Galerkin solution in one-dimension with no source term and
where the diffusion ternk, is decreased to mak®e = 100. A ten element model based
on linear interpolation is shown in Fig. 14.4.1 along with the exact solution (dashed line).
Is is easily seen that the effect of the sharp boundary layer has propagated back into the
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full domain and gives a very inaccurate result. By way of comparison, the addition of the
SUPG terms give the result in Fig. 14.4.2. The improvement is drastic, with the SUPG
giving numerical results that are essentially exact at the nodes. If one reviews the error
estimate for the Galerkin result (see Fig. 14.4.3) it is tempting to simply try to make the
elements smaller near the boundary layer. However, that does not give much
improvement (as seen in Fig. 14.4.4) and a much finer mesh would be required to attempt
to get reasonable accuracy and thus the SUPG modifications are much more cost
effective.

The one-dimensional source code, in Fig. 14.4.5, illustrates typical considerations of
SUPG methods. This version is designed to let the student switch from the standard
Galerkin to SUPG by supplying the keywoslipg in the input file. In the one-
dimensional case we know that the fluid velocity is constant and acts over the full length
of the element. Thus, one can select to compute the upwind parameters outside the
element numerical integration loop. They are illustrated in lines 46 to 51. Other changes
that relate to the SUPG selection occur between lines 70 to 91. The consistent SUPG
method introduces second derivates of the interpolation functions. They may or may not
be zero. Lines 72 through 78 address their inclusion, as do lines 84 and 85, even though
most programmers choose to omit them. If we neglect the second derivative question we
always have to append new matrices to the element source vector and square matrix. The
main difference in the element matrices, lines 89 through 91, compared top previous
examples is that we have both the interpolationsNoand H appearing in the matrix
products instead of jusd. Note that the physical derivatives Hf in the x-direction,
DGH(31,:) is actually a derivative taken tangent to the fluid streamline so the term
u* DGH(1,:) in line 91 is related to the speed of the flow times the gradient of the
unknown along the streamline. Also remember that line 91 makes the square matrix non-
symmetric. The data file for this example is in Fig. 14.4.6. The exact solution to be
compared with (case 18) is identified in line 3 while its use is invoked in lines 19 and 20.

It requires the global Peclet number and that is supplied as miscellaneous data as the last
line (52) and is not used anywhere in the application source code of Fig. 14.4.5.

14.6 Generalizing to Higher Dimensions

Here we will outline the generalization of the previous process to a single
implementation that can handle 1-D, 2-D, 3-D, or axisymmetric domains for any element
in the MODEL library. Generalizing the SUPG method requires much more data to
describe the velocity field and required items along the streamline directions. The current
version allows the choice of four different definitionsrofThus the example program is
quite a bit longer but is easily broken into four conceptual tasks.
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L] e

2] ! »** ELEM_SQ_MATRIX PROBLEM DEPENDENT STATEMENTS FOLLOW ***
B

4] ! Define any new array or variable types, then give statements

5] ! (Library example number 112)

6] ! Galerkin or SUPG 1-d Advection-Diffusion Problem

7] ' u * dp/dx - d(k * dp/dx)/dx = Q, assume u, k, Q constant

8] !

9 'u = GET_REAL_LP (1) ! velocity

10] 'k = GET_REAL_LP (2) I conductivity

11]'Q = GET_REAL_LP (3) ! source per unit length

12] 1 SUPG = global logical flag ! F=Galerkin (default), T=SUPG

13

14]1'LT_N = number of nodes for this element type

15] ' MISC_FX = number of integer miscellaneous properties

16] ! N_LP_FLO = number of real element properties

171'W = Petrov weight, DGW its global derivative

18

19] REAL(DP) : W (LT_N), DGW (1,LT_N) ! SUPG & deriv

20] REAL(DP) ::D2GH (1, LT_N) | SUPG, zero ?

21 REAL(DP) :: DL, DX_DR, DL_A ! Length, Jacobian

22 REAL(DP) :: u, k, Q ! input data

23 REAL(DP) :: Pe, ALPHA, COTH ! Peclet data, L2

24 INTEGER :1Q ! Loops

25] REAL(DP), SAVE :: Pe_max ! debugging

26

27

28] DL = COORD (LT_N, 1) - COORD (1, 1) ! Element length

29] DX DR = DL / 2. I constant Jacobian
30] DL A =DL/ (LT_N-1) I SUPG length

31

32]! DATA READS AND SAVES

33] u = GET_REAL_LP (1) I velocity

34] k = GET "REAL_LP (2);E=k ! conductivity

35 Q = 0 IF (N_LP FLO>2)Q GET_REAL_LP (3) ! source

36 = | constitutive

37

38 IF ( IE = = 1 ) THEN'!FIRST ELEMENT, ONE TIME ACTIONS
39 Pe max = 0.dO I initialize
40

41 IF ( .NOT. SUPG ) THEN ! echo choice
42 PRINT *'NOTE: Galerkin method’ I default

43 ELSE ; PRINT *'NOTE: SUPG method’ ; END IF ! supg

44 END IF ! FIRST ELEMENT

45

46] ! SUPG TERMS (ASSUMING L2 ELEMENT), ? Biasfor L3, L4 ?
47 Pe = ABS(u)*DL/k I Grid Peclet

48 IF ( Pe > Pe_max) Pe_max=Pe I for debug

49] COTH = COSH (Pe/2)/ SINH (Pe/2) ! Optimal SUPG

50] ALPHA = ABS (COTH) - 1.d0/ ABS (Pe/2) ! Optimal SUPG L2

51] ALPHA = SIGN (ALPHA, u) I abs(ALPHA)*sign of u

Figure 14.4.5(cont.) One-dimensional SUPG source code
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52

53]! - ELEMENT MATRICES FORMATION ----------

54] CALL STORE_FLUX_POINT_COUNT ! Save LT_QP FOR SCP

55

56] DO IQ=1,LT_QP ! LOOP OVER QUADRATURES, S, C zeroed

57

58] ! GET TRIAL INTERPOLATION FUNCTIONS, AND X-COORD

59 H = GET_H_AT_QP (IQ) ! SOLUTION INTERPOLATION

60 XYZ = MATMUL (H, COORD) ! ISOPARAMETRIC

61

62] ! LOCAL AND GLOBAL FIRST DERIVATIVES

63 DLH = GET_DLH_AT_QP (IQ) ! LOCAL DERIVATIVE

64 DGH = DLH/DX_DR ! PHYSICAL DERIVATIVE

65

66]! ** SELECT STANDARD GALERKIN OR SUPG ***

67 IF ( .NOT.SUPG) THEN ! Galerkin

68 W = H ; DGW (1,:)=DGH (1, 3)

69

70 ELSE ! SUPG Method

71]! LOCAL AND GLOBAL SECOND DERIVATIVES (FOR N_SPACE ==1)

72 SELECT CASE (LT_N) | ELEMENT LIBRARY CHECK

73 CASE (2) ; D2LH = 0.d0

74 CASE (3); CALL DERIV2_3_L (PT (1, 1Q), D2LH (1, 3))

75 CASE (4) ; CALL DERIV2_4_L (PT (1, 1Q), D2LH (1, 3))

76 CASE DEFAULT ; STOP 'NO SECOND DERIVATIVE IN LIBRARY’

77 END SELECT

78 D2GH = D2LH/DX_DR*2 | PHYSICAL SECOND DERIVATIVE

79

80] ! SUPG WEIGHTINGS, NOTE SECOND DERIVATIVE IN DGW

81 W = H + ALPHA*DGH (1, :)*DL_A*0.5d0

82 DGW (1,:) =DGH (1, :) + ALPHA * D2GH (1, :)*DL_A*0.5d0

83]! PRE-INSERT SECOND DERIVATIVE RESIDUAL, IF ANY

84 IF (LT_N>2)S=S+k*ALPHA*DL_A*WT (IQ) &

85 * DX_DR * OUTER_PRODUCT (DGH (1, :), D2GH ({, 3))

86 END IF ! Method option

87

88] ! MATRICES: SOURCE, CONDUCTION & ADVECTION

89 C=C+ Q*W* WT(IQ) *DX_DR ! SOURCE

90 S =S + ( k* MATMUL (TRANSPOSE(DGH), DGH) &

91 + U * OUTER_PRODUCT (W, DGH(1,}))) * WT (IQ) * DX_DR

92

93] --> SAVE COORDS, E, DERIVATIVE MATRIX FOR POST PROCESSING

94 CALL STORE_FLUX_POINT_DATA (XYZ, E, DGH)

95] END DO ! QUADRATURE

96 IF ( IE == N_ELEMS) PRINT *’Maximum element Pe =’, PE_max

97]! ** END ELEM_SQ_MATRIX PROBLEM DEPENDENT STATEMENTS ***
Figure 14.4.5 One-dimensional SUPG source code

For higher dimensional problems we can form a single element based upwind length
measure by evaluating the velocity at the element center to form nodal distances, such as
in Figs. 14.2.2b and 3b, and then convert them to a single length as illustrated in
Figs. 14.2.2c and 3c. Denote that lengtth@s,, Along the streamline we could use the
1-D optimal length scalingy,,;, based on the local element Peclet number (at the center)
to compute a corresponding stabilization term:

Tgeom — Qopt hgeom/ 2|l
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1] title "SUPG Advection-Diffusion, Pe=100"
2] example 112 ! Application source code library number
3] exact_case 18 ! Analytic solution for list_exact, etc
4] bar_chart ! Include bar chart printing in output
5] b_rows 1 ! Number of rows in the B (operator) matrix
6] dof 1 ! Number of unknowns per node
7] el _nodes 2 ! Maximum number of nodes per element
8] elems 10 ! Number of elements in the system
9] gauss 4 | Maximum number of quadrature points
10] nodes 11 ! Number of nodes in the mesh
11] line_el I Major elements are line elements
12] space 1 ! Solution space dimension
13] el_homo ! Element properties are homogeneous
14] el _real 3 ! Number of real properties per element
15] supg I Use streamline upwind Petrov-Galerkin method
16] reals 1 ! Number of miscellaneous real properties
17] pt_list ! List the answers at each node point
18] remarks 5 I Number of user remarks, e.g. property names
19] list_exact ! List given exact answers at nodes, etc
20] list_exact_flux ! List given exact fluxes at nodes, etc
21] unsymmetric I Unsymmetric skyline storage is used
22] end I Terminate control, remarks follow

23] 1 u * dp/dx - d(k * dp/dx)/dx = Q, assume u, k, Q constant

2412 for Pe *uXx+ uxx =0, u(0) =1, u(l) =0, Pe=u/k, Q=0
25] 3 Exact u(x) = (EXP(Pe * X) - EXP (Pe))/(1.d0 - EXP (Pe))
26] 4 For Pe >> 1 we loose u,xx and the second required EBC
27] 5 except for a small boundary layer near that EBC

28] 1 1 0. ! node,bc flag, x

0.1

0.
0.
0.
0.
0.
0.
0.

POsoooocooo
PNOUIDWN

37] 1 0.9
1 1.0 ! end nodes
2 ! elem, nl, n2

3

Qowoo~NoOUl A~

=Y

48] 1

=
HO(DOO\ICDO'IQOJNH

[
=

I end elements
.0 I'node, dof, bc_value
.0 I'node, dof, bc_value
.01 00'uk, Q
00. ! Misc real: Pe for exact solution use

Figure 14.4.6 Data for 1-D SUPG test
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1
1
1

Those same nodal distances can also be averaged over the element volume and the total
number of nodes by using their interpolations over the element to define another upwind
length,h,y:
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ZE[Hjhj

] e

Ny = ———
Z[[HJ
) Pe

which likewise defines a stabilization parametgy. These two geometric definitions of
element lengths ands will be extended with two additional definitions here that come
from more mathematical justifications. Tezduyar and Park [22] defined an alternate
geometric length. It is known dg4, since it comes from the dot productwfnd the
gradient of the generalized element interpolation functdngsor our scalar variable
examples it is:

D—l
hugn = 2|l 21U~ OH; |
J
They define the corresponding advection dominated flow stabilization parameter to be

Tugn = hugn [ 211|

and a similar form for stabilizing the least squares incompressiblity constraint in Navier-
Stokes flows.

More recently Tezduyar and Osama [24] suggestegarameter based on scaling
the Galerkin and stabilization matrices to be of the same order in each element. Thus
they use the ratios of two matrix norms to establish the stabilization parameters for
advection, diffusion, and transient dominated regions. Since the resultmglves the
ratio of the norms of two matrices it has been found to be relatively insensitive to the
method chosen to evaluate a matrix norm. Here we will use the norm to be the square
root of the sum of the squares of all the terms in the matrix.

Note from Eq. 14.8 that the Galerkin contribution will produce three square
matrices. They come from transient, advection, and diffusion dominated terms. A
discontinuous Petrov stabilization term would also contribute similar terms but usually
linear elements are employed so the second derivative contribution is zero in that case.
The setting ofr by a matrix norm method is an attempt to assure that the Galerkin and
Pertov terms are of the same order of magnitude, relative to the effect that is dominating
the flow. For advective dominated flow the definition of thg,, given by the ratio
norms of the two matrices arising from the [g terms:

||J’HTv-IZIH dx|

Tnorm -

||J’v-IZIHTv-IZIH dx||

Draft — 6/10/02 © 2002 J.E. Akin. All rights reserved.



426 J.E. Akin

s ELEM_SQ_MATRIX PROBLEM DEPENDENT STATEMENTS FOLLOW ***

Advection-Diffusion Equations: 1-D, 2-D, 3-D, Axisymmetric

! u* DelP-Del(EDelP)+rP-Q=0
! VIA NUMERICALLY INTEGRATED ELEMENTS

I MISCELLANEOUS REAL PROPERTIES: (1) = diffusity
10]! (2) = SOURCE, Q, (optional, defaults to 0)

11]! (3) =, (optional, defaults to 0)

12]! (4) = THICKNESS (optional, defaults to 1 or radius)

13]! NOTE: u is defined via subroutine VELOCITY_AT_POINT

14

15] REAL(DP) :: CONST, DET, DET_WT, THICK ! integration

16] REAL(DP) :: SOURCE, RATE | data: Q &r

17] INTEGER :IP I counter

18

19]! Required upwind items

20] REAL(DP) :: CENTER (N_SPACE) I average of nodes
21] REAL(DP) :: U (N_SPACE) I Velocity vector

22] REAL(DP) : UNIT_V (N_SPACE), SPEED ! unit vector, speed
23] REAL(DP) :: U_DGH (LT_N) I streamline gradient
24] REAL(DP) ::D2GH (N_2 _DER,LT_N) ! 2nd deriv of H

25] REAL(DP) :: E_UP, E_CROSS ! Diffusion up & cross
26] REAL(DP) ::VISCOSITY 'in E

27] REAL(DP) :: TAU ! stabilize term

28

29]! Stabilization matrix notations

30] REAL(DP) : S M (LT_FREE, LT_FREE) ! SUPG sqg matrix

31] REAL(DP) :
32] REAL(DP) :

(LT _FREE, LT_FREE) ! SUPG sq matrix
(LT_FREE, LT_FREE) ! SUPG sq matrix
33] REAL(DP) : AR (LT_FREE, LT_FREE) ! SUPG sq matrix
34] REAL(DP) :: S_R_BAR (LT_FREE, LT_FREE) ! SUPG sq matrix
35] REAL(DP) :: ' SUP (LT_FREE, LT_FREE) ! SUPG sq matrix

(/J(I)U)UJ

_C
K
K B

R_B

36] REAL(DP) : C_UP (LT_ FREE) I SUPG column matrix
37

38]! Optional geometric upwind items

39] REAL(DP) :: RADIAL (LT_N, N_SPACE) I relative positions

40] REAL(DP) :: DOWN (LT_N) I downwind wrt center
41] REAL(DP) :: DOWN_NODAL (LT_N) I downwind total

42] REAL(DP) : GEOM_H, VOL_H ! element DW lengths
43] REAL(DP) :: GEOM_TAU, VOL_TAU I element Tau values
44] REAL(DP) :: PECLET, ALPHA I Re Peclet number
45] LOGICAL :: IS_DOWNWIND (LT_N) I true if downwind node
46

47]! Optional norm based upwind items

48] REAL(DP) :: ONE_PT (LT_PARM), ONE_WT ! 1 pt rule

49] REAL(DP) :: UGN_TAU I ugn

50] REAL(DP) :: S1_TAU, NORM_C, NORM_K_BAR ! norms

51

52 S M =0; S C=0;S K=0! Initialize element

53

Figure 14.5.1a Storage for general advection-diffusion
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54]!--> DEFINE ELEMENT PROPERTIES

55] RAT E = 0 ; SOURCE=0;THICK=1;VISCOSITY =1 !initialize

56] IF ( REALS >0) VISCOSITY = GET REAL MISC (1) ! constant diffusity
57] IF ( REALS > 1) SOURCE = GET_REAL_MISC (2) ! constant Q

58] IF ( REALS >2)RATE GET_REAL_MISC (3) ! constant r

59] IF ( REALS >3) THICK GET_REAL_MISC (4) ! constant thickness

60

61] CENTER = SUM (COORD, DIM=1)/LT_N I center point
62] CALL APPLICATION_E_MATRIX (IE, CENTER, E) I constitutive law
63

64] IF ( SUPG) THEN! Streamline Upwind Petrov-Galerkin additions

65

66]! INITIALIZE STABILIZATION ARRAYS

677 S_UP = 0.d0;C_UP=0.d0;H_INTG = 0.d0
68] S_K _BAR = 0.d0;S_R_BAR =0.d0

69
70]! GET CENTER VELOCITY AND DIFFUSION

71  CALL VELOCITY_AT_POINT (CENTER, U, UNIT_V, SPEED) ! velocity
72
73]! GET DIFFUSION ALONG STREAMLINE

74]  CALL DIFFUSION_UPWIND (E, UNIT_V, E_UP, E_CROSS) ! transform
75
76] IF ( TAU_GEOM .OR. TAU_VOL ) THEN

77 CALL GET_RADIALS_FROM_CENTER (CENTER, RADIAL)

78 CALL GET_DOWNWIND_LOGIC (RADIAL, UNIT_V, DOWN, IS_DOWNWIND)
79 CALL GET_MAX_DOWNWIND_DIST (DOWN, DOWN NODAL)

80 END IF

81

82 IF ( TAU GEOM)THEN

83 GEOM_H = ABS (MINVAL (DOWN)) + MAXVAL (DOWN)

84 PECLET = 0.5d0 * SPEED * GEOM_H/E_UP

85 CALL PECLET_OPTIMAL_RULE (PECLET, ALPHA)

86 GEOM_TAU = 0.5d0 * GEOM_H * ALPHA / SPEED

87 END IF ! Tau_geom

88

89 IF ( TAU_UGN) THEN

90 CALL GET_ONE_PT_RULE (ONE_PT, ONE_WT) ! local point
91 CALL SCALAR_DERIVS (ONE_PT, DLH) I deriv of H
92 AJ = MATMUL (DLH, COORD) I' Jacobian, J
93 CALL INVERT_JACOBIAN (AJ, AJ_INV, DET, N_SPACE) ! Inverse of J

94 DGH = MATMUL (AJ_INV, DLH) ! DelH

95 U_DGH = MATMUL (U, DGH) ! u dotDelH
96 UGN_TAU = 1.d0/SUM ( ABS (U_DGH)) I Tau ugn value
97 END IF! Tau_ugn

98

99] END IF ! Initialize upwinding

100

101]! STORE NUMBER OF POINTS FOR FLUX CALCULATIONS

102] CALL STORE_FLUX_POINT_COUNT ! Save LT_QP

103

Figure 14.6.1b Computations at element center
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104]'--> NUMERICAL INTEGRATION LOOP

105] DO IP=1,LT_QP

106 H = GET_H_AT_QP (IP) I EVALUATE INTERPOLATION FUNCTIONS
107 XYZ = MATMUL (H, COORD) ! FIND GLOBAL COORD, ISOPARAMETRIC
108 DLH = GET_DLH_AT QP (IP) ! FIND LOCAL DERIVATIVES

109 AJ = MATMUL (DLH, COORD) ! FIND JACOBIAN AT THE PT

110

111]! FORM INVERSE AND DETERMINATE OF JACOBIAN

112 CALL INVERT_JACOBIAN (AJ, AJ_INV, DET, N_SPACE)

113 IF ( AXISYMMETRIC ) THICK = TWO_PI * XYZ (1) ! via axisymmetric

114 CONST = DET *WT(IP) * THICK ! local measure
115 H_INTG = H_INTG + H* CONST I H integral

116

117]! EVALUATE GLOBAL DERIVATIVES, DGH ==

118 DGH = MATMUL (AJ_INV, DLH) I Physical gradient H

119]! Note: D2GH assumed zero here ! 2nd Derivs H

120 B = DGH ! copy DGH into B

121

122]! VARIABLE VOLUMETRIC SOURCE, via keyword use_exact_source
123]! Defaults to file my_exact_source_inc if no exact_case key

124 IF ( USE_EXACT SOURCE) CALL & ! analytic Q

125 SELECT_EXACT_SOURCE (XYZ, SOURCE) ! via exact_case key
126

127]! GALERKIN SOURCE TERM

128 C = C + CONST * SOURCE *H I source resultant

129

130]! DIFFUSION SQUARE MATRIX

131 S K = S K+ CONST * MATMUL (MATMUL (TRANSPOSE (B), E)), B)
132

133]! ADD RATE SQUARE MATRIX from -r*U

134 S_ M = S M+ RATE * OUTER_PRODUCT (H, H) * CONST

135

136]! IGNORE SQUARE MATRIX FROM 2nd DERIVATIVES, INITIALLY

137

138]! SET STREAMLINE DIRECTION (AND DEFAULT IF SPEED = 0)

139 CALL VELOCITY_AT_POINT (XYZ, U, UNIT_V, SPEED)

140

141]! ADVECTION SQUARE MATRIX -V*Grad_U

142 U_DGH = MATMUL (U, DGH) ! vel dot grad H
143 S C =S C+OUTER_PRODUCT (H, U_DGH) * CONST ! no upwind
144

145 IF ( SUPG) THEN ! UPWIND AT QP

146

147]! GET DIFFUSION ALONG STREAMLINE, E_UP, FROM E TENSOR
148 CALL DIFFUSION_UPWIND (E, UNIT_V, E_UP, E_CROSS)

149

150]! FORM STABILIZATION ARRAYS (LESS Tau SCALE)

151 C_UP = C_UP + SOURCE *U_DGH * CONST

152 S K_BAR = S_K_BAR + OUTER_PRODUCT (U_DGH, U_DGH) * CONST
153 - 2nd deriv, & variable E, now neglected

154 S R _BAR = S_R_BAR + OUTER PRODUCT (U_DGH, H) * RATE * CONST
155 END IF ! SUPG VARIABLE UPWIND

156

157]'--> SAVE COORDS, E AND DERIVATIVE MATRIX, FOR POST PROCESSING
158 CALL STORE_FLUX_POINT_DATA (XYZ, (E * THICK), B)

159

160] END DO ! for integration

Figure 14.6.1c Numerical integration of advection-diffusion items
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161

162 S =S K+S M+S C ! if no upwinding

163

164] IF ( TAU_VOL ) THEN !integral average downwind dist

165 VOL_H = DOT_PRODUCT (H_INTG, DOWN_NODAL) &

166 / SUM (H_INTG) /LT_N I integral average

167 PECLET = 0.5d0 * SPEED *VOL_H/E_UP

168 CALL PECLET_OPTIMAL_RULE (PECLET, ALPHA)

169 VOL_TAU = 0.5d0 * VOL_H * ALPHA / SPEED

170 END IF ! Tau geom

171

172] IF ( SUPG) THEN! STABILIZE SOLUTION, DEFAULT TO S1

173 NORM_C = SQRT (SUM (S_C **2 )) ! 2 norm

174 NORM_K_BAR = SQRT (SUM (S_K_BAR **2))!2 norm

175 S1_TAU = NORM_C/NORM_K_BAR I' norm method

176

177 IF ( TAU_GEOM ) THEN I keywords supg and tau_geom

178 TAU = GEOM_TAU

179 ELSEIF ( TAU_UGN ) THEN ! keywords supg and tau_ugn

180 TAU = UGN_TAU

181 ELSEIF ( TAU_VOL ) THEN ! keywords supg and tau_vol

182 TAU = VOL_TAU

183 ELSEIF ( TAU_S1 ) THEN ! keywords supg and tau_norm

184 TAU = S1_TAU

185 ELSE I keyword supg only

186 TAU = S1_TAU

187 END IF ! user selection

188

189]! FORM SUPG ADDITIONS FOR AN ELEMENT BASED TAU

190 C = C + C_UP*TAU

191 S UP = (S K BAR+S R BAR)*TAU

192 S =S+ S_UP

193] END IF!SUPG

194]! *** END ELEM_SQ_MATRIX PROBLEM DEPENDENT STATEMENTS ***
Figure 14.6.1d Final selection ofand SUPG stabilizations

# UPWIND_WORD I REMARKS [DEFAULT]
supg I Use streamline upwind Petrov-Galerkin method [F]

tau_geom I use Akin geometry method for SUPG Tau [F]

tau_norm I use Tezduyar norm method for SUPG Tau [T]

tau_ugn I use Tezduyar UGN method for SUPG Tau [F]

tau_vol I use Akin volume method for SUPG Tau [F]

Figure 14.6.2 New control options for stabilized solutions

14.7 Two-dimensional Examples

The extension of SUPG methods two higher dimensions is relatively clear but there
are choices to be made on the most cost effective way to get the effective Peclet number.
This may involve elements where the velocity is clearly constant in a element, or it may
have significant changes over an element (as in a high degree p-method formulation).
Some logical options will be considered after some typical numerical results are
presented. We will begin using only the classic linear triangular element (T3) and
consider higher degree elements in later examples. A common test case is where a fluid
enters the lower left edge of a rectangle and exits at the lower right edge as shown in
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Fig. 14.7.1. The boundary condition on the unknown is that it varies rapidly from zero to
two along the inflow boundary and is zero at the impervious sides. Along the inflow edge
(of the negative x-axis) the given valueTis= 1 + tanh((2 *x + 1) * 10) for x =[-1, 0].
The outflow and interior values are to be determined. For an infinite Peclet number (no
diffusion) the outflow values should be the mirror images of the input curve. The
velocity components ane = 2y (1 - x%) andv = -2x(1 — y?) which means that for
relatively large elements both the magnitude and direction of the velocity may change
significantly within the element. This velocity field is maximum at the origin, zero on
three sides, and is clockwise about the origin.

An initially uniform mesh of linear, T3, triangular elements is selected as shown in
Fig. 14.7.1 along with essential boundary condition flags at the nodes, and a typical low
velocity Galerkin solution. That mesh was designed so that the same nodes can be used
to form a similar mesh made with quadratic, T6, triangles, or the corresponding Q4 or Q9
guadrilateral elements. When the local Peclet numbers are low a reasonable Galerkin
solution can be obtained without stabilization, as illustrated in Fig. 14.7.1. But if one
increases the maximum Peclet number the a unstable Galerkin solution results as seen in
Fig. 14.7.2. Retaining the same data but stabilizing the solution (simply by adding
control keywordsupgto the input) renders a drastically improved solution whose front
and back views are seen in Figs. 14.7.3. respectively. Applying the four stabilization
choices gives the inlet and outlet solutions {far 0), and the solution profiles alone the
mid-plane & = 0) as shoen in Figs. 14.7.4 and 5, respectively.
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Figure 14.7.1 Smith-Hutton test, initial T3 mesh, and low Pe Galerkin solution
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FEA Solution Component_1: 400 Elements, 231 Nodes, (3 per Element)
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FEA Solution Component_1: 400 Elements, 231 Nodes, (3 per Element)
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Figure 14.7.3 A very high Pe SUPG T3 solution (front and back)
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Figure 14.7.4 Initial inletX < 0) and outlet values for=0

Figure 14.7.5 Initial mid-planex(= 0) values
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FE New Element Sizes: 400 Elements, 231 Nodes (3 per element)

12
1 NN
0.8 &&
A\ NN R RN
NN NN N N NN
0.6
N NN N NN NN SR AR
>-
04 NSNS SR YRR RSN
' AN NS A A SR RNANY
0.2 D VDR NN RN NN N AN RIS RN
il \ NI VBVBQ whﬂhﬂﬁghﬂg
. NN AN RIS A A VAR VAR AN
_Olzk
Il Il Il Il Il Il Il Il Il J
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
X
FE Mesh; 728 Elements, 398 Nodes with BC or MPC Noted
1.4
SUPG method
1.2
1k Sk N N Sk N N 2 2 S Sk N N 2 Sk S N S
1 3
08F 3 K
K K
0.6 E
3
> E
%
04r- E
¥
E
0.2 E x
E X
(0} HK—K SNSRI HH—H————K
-0.2
-0.4r i i i i i i i i i i i

-1 -08 -06 -04 -0.2 0 0.2 0.4 0.6 0.8 1

Figure 14.7.6 Estimated sizes and revised SUPG T3 mesh

Draft — 6/10/02 © 2002 J.E. Akin. All rights reserved.



436 J.E. Akin

FEA Solution Component_1: 728 Elements, 398 Nodes
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FE New Element Sizes: 576 Elements, 625 Nodes (4 per element)

] ][] ]
|l Dooo ] |
R ) ]
]
L1 ]
Ll I
O] A
] 8110 1 -
o] 8] 1 ] 1 L] ]
o0 ] | o 1] O
EE ] o I A oo
o \ oo
] i | S
I |
L] L] of || -
| HIEIE o ||
‘ i J djo|oe o |0 10 ‘TiJ
Ti\ Olo|ole 50 \<H \ jil)
] ] |
A v 5 e e
Oojojolalslalel=laldl T || i
AT 1 OO L L[
-0.4 -0.2 0 0.2

Figure 14.7.9 Typical Galerkin Q4 solution and mesh refinement suggestion

Draft — 6/10/02 © 2002 J.E. Akin. All rights reserved.



438 J.E. Akin

FEA Solution Component_1: 576 Elements, 625 Nodes, (4 per Element)
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FEA Solution Component_1: 576 Elements, 625 Nodes, (4 per Element)
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Employing the element error estimators suggests that the current element sizes
should be scaled as shown in Fig.14.7.6. Supplying those guidelines for element
densities to an automatic mesh generator yield a second mesh, in the same figure, and
whose new solution surface is displayed in Fig. 14.7.7. This is a typical example of how
stabilized solutions are essential for non-elliptical differential equations.

As a second stabilization example consider a common test problem called the
Cosine Hill. It assumes almost pure advectign=(1le—8) using a counterclockwise
circular velocity field centered on a square, with2 < x,y < 1/2. The fluid speed
proportional to the radial distance from the center of the square. As shown in Fig. 14.7.8,
the initial mesh hag = 0 on the boundary of the square. On the interior ling at0
andy < O it varies asp = Sin (77(1— 2y)). In this case the source ter@, is zero. For
pure advection, the solution surface should circle back on its self with no change. That s,
in the limit we should see a zero valuedgf/ dx as the solution approachgs= 0 from
x < 0. Typical Galerkin solutions would have very large oscillations as they approach
x =0.

The initial Q4 element mesh, in Fig. 14.7.8, has been chosen so that it is uniform
and so that without changing the nodal count or locations one can employ a mesh for Q4,
Q9, Q16, T3, T6, or T10 elements. This allows one to compare linear, quadratic, and
cubic elements. In addition, all of these meshes yield nodal results that can be projected
to a common Q4 mesh for visual comparisons. This mesh can be refine uniformly to
retain this feature, or if one uses an error estimator new non-uniform meshs can be
developed. The results depend on the element degree, the choeicanof the relative
element sizes and locations. Thus, it is well suited for parametric studies of those
variables. Many such studies have been carried out but space here limits us to a few
examples.

A typical Galerkin solution result is shown in Fig.14.7.9 along with the estimated
required mesh refinement. One could continually refine the mesh in this fashion and
possibly obtain a useful Galerkin solution, but it is more more cost effective to employ a
stabilization method.

Figure 14.7.10 shows an initial solution using Q4 elements anqdjhahoice. The
arrow indicates a lack of smoothness common to most of the solutions. Note that the
vertical axis of these plots gives the minimum and maximum function value found
anywhere in the mesh. That allows some extra comparisons of the various surface plots
to follow which at first glance look very similar when projected onto a common reference
surface. This solution yielded error estimates that suggested a new non-uniform mesh
with local element sizes also shown there. Note that the new sizes are not symmetrically
spaced and refine the region near O~ more. The corresponding figures fofom
Tugn @NdT,om, USING the Q4 elements, are given in Figs. 14.7.11 to 13, respectively.

We will illustrate the other linear through cubic elements, that can use the same
nodes, by applying the,,, to the initial mesh only. We begin with the Q9 and Q16
elements. The Q9 solution results are shown in Fig. 14.7.14 and those for the Q16
elements are in Fig. 14.7.15. These are cude meshes even though the polynomial degree
is higher. The corresponding first suggested mesh revisions are given in Fig. 14.7.16, but
one probably needs even smaller sizes (which can be done via control keywords). The
corresponding linear through cubic T3, T6, and T10 triangular family element results and
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FEA Solution Component_1: 576 Elements, 625 Nodes, (4 per Element)
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FEA Solution Component_1: 576 Elements, 625 Nodes, (4 per Element)
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Figure 14.7.13 The Q4 result and new mesh estimate fxgm
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Figure 14.7.14 Quadratic Q9 results fgg,,,, normal, wireframe, projected
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FE New Element Sizes: 144 Elements, 625 Nodes (9 per element)

0.5

0.4

0.3

]

]

0.2~

REE

0.1

O]
H

)

]
NS (L

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

FE New Element Sizes: 64 Elements, 625 Nodes (16 per element)

0.5

0.3

0.1

—0.5L-1 1 L ! 1 I
-0.6 -0.4 -0.2 0 0.2 0.4 0.6

X
Figure 14.7.16 Initial suggested refinements for Q9, Q16 ayith

Draft — 6/10/02 © 2002 J.E. Akin. All rights reserved.



FEA Solution Component_1: 1152 Elements, 625 Nodes, (3 per Element)

‘w«m <
h

Wi} 5} imi N

A i |
A 'fwu\
A 4} » H ’
©os5 ‘%‘gg;ﬂ,

pesan

/Iﬂr\‘

i m

‘N ‘m\

\\éﬁ%g,
A\“ e

FE New Element Sizes: 1152 Elements, 625 Nodes (3 per element)

AAAAA
l\7l\a| v va




Finite Elements, Stabilized Methods 447

suggested mesh refinements are given in Fig. 14.7.17 to 19, respectively.

The higher order element solutions shown here are based on the common practice of
omitting the second order derivatives of the interpolation functions. All four choices for
r seem to give similar results here for a problem with no source term. One can apply the
same grid spacing for meshes with Serendipity quadratic, Q8, and cubic, Q12,
guadrilaterals. However, fewer nodes and equations are used since they do not have
interior nodes. Considering that effect they seem to perform equally well in this test
without a source term.

Since stabilization methods should also be tested on problems with source terms the
final example will consider a problem with a constant source term distributed over a
square, with the function having essential boundary values of zero on all four edges, and
having a constant diagonal flow with a unit velocity. For very high advection rates the
solution is pushed into the cornenat y = 1/2 and the rapidly drops to zero through a
sharp boundary layer along the liness 1/2 andy = 1/2. Again a uniform initial mesh
is selected so that the same set of nodes can be employed in meshes that use different
element types taken from the linear through cubic degree elements in list of T3 or T6 or
T10 or Q4 or Q9 or Q16 elements. All of these give results that can be projected onto a
common Q4 mesh to simplify visual comparisons. The initial mesh was chosen to be
relatively crude and consisted of a ¥818 grid of square Q4 linear elements.

A repeatedly refined mesh of Q4 elements was employed to obtain a fine scale
reference solution to which other results will be compared. Two views of that solution
are given in Fig. 14.7.20. Its maximum solution value is 5.14. The fadefinitions
given earlier were employed for the initial 28 18 Q4 mesh. The initial solution value
contours for the reference solution, classic Galerkin, and the fostabilization
definitions are given in Fig. 14.7.21. The peak solution values (included in the captions)
are 5.14, 5.76, 4.87, 4.70, 4.99, and 5.65, respectively. When a source term is present, as
here, we see that thg, choice is like the Galerkin solution and significantly overshoots
the true result by more than 10 %. The other three stabilization parameter definitions
under estimate the peak value by about 5 %.

Next we will employ the same number of nodes and Q4 elements but bias the mesh
toward the expected boundary layer as illustrated in Fig. 14.7.22. The boundary region
of the four stabilized models, using this mesh, are given in Fig. 14.7.23 (to the same
scale). The maximum solution values Qfm, Tugn Tgeom aNdz,q are now 4.92, 4.86,

5.07, and 5.24 respectively (compared to the much finer reference solution value of 5.14).
In the initial meshr was a single constant over the full domain. Now since the element
sizes are changing each element has a differevelue. One might expect that the
stabilization terms will be highest in the boundary layer. That is not the case as can be
seen from the four contour plots in Fig. 14.7.24. The peakalues for each definition

vary significantly. Forznom, Tygn Tgeom andr,q the peak element values are 0.0383,
0.0542, 0.0346, and 0.0018, respectively. These peaklues occur near the largest
elements in the lower left corner region. The minimum values occur at the smallest
element and are 0.0058, 0.0081, 0.0011, and 0.0000, rescectively. When quadratic and
cubic elements are utilized the solution improves but the distributierr@iains about

the same in shape. Their peak solution values are closer to the reference solution. The
same is not true for the Serendipity Q8 and Q12 elements which yield strabge results near
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FEA Solution Component_1 for 625 nodes projected to Q4 mesh
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Figure 14.7.20 Reference Q4 solution for advection of a constant source
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FE Mesh; 361 Nodes, 72 with BC or MPC Noted
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the two far corners off the main diagonal of flow.

Using mesh refinements guided by the error estimator all solutions approach the
same value. Even with the @ake biased mesh the Galerkin solution becomes very
unstable if the local Peclet number is increased as seen in Fig. 14.7.25.

The 7,,m andrgeom can be extended to define a nodal basiet that define variable
values at the quadrature points. They give results similar to tee approaches that
hold 7 constant in each element. However, thg,, approach requires iteration. That is
not a major problem since iterative solvers are often used in finite element analysis,
especially for Navier-Stokes solvers.

14.8 Exercises

1. A model equation with a non-uniform source and a boundary layexrears
-u" + ku = Qwhenk>>1 andu(0) = 0 = u(1). Obtain a finite element solution
when the source per unit length is defined as:

a) Q = 3k X% so thatu(x) = x® + AX? + Bx + C(€* - 1)/(e“ - 1) whereA = 3/,
B = 6/k? andC = - (1 + A + B).

b) Q = 3kx® + 2kmCos(27 X) + 47°Sin(2rx) so u(x) is the alove epression
plus Sin(2 7 x).

Note that in both cases the total applied sourck. i$Jsek = 1 andk = 60 to see
solutions without and with a boundary layer, respectively. fer 60 these two exact
solutions correspond &xact case28 and 29 in MODEL, respectively.)

2. A one-dimensional problem with boundary layex at1 is
-ku'(x) +u'(x)=1, O0=<x<l1

with the boundary conditions ai(0) =0=u(1). Obtain finite element solutions for
k =0.1 andk =0. 01 and compare them to the exact result of

u(x) = x — exp[(x — 1)/ k] — expl-1/ K]/ 1 - exp[-1/K].
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