Comp 212 March 20, 2000

Cverview

e Examples cf siftDown() and siftUp()
e Analysis of HeapSorter()'s runring time

e Quicksort
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Example et siftDown ()
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Example cf siftUp()
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Analysis ct HeapSorter()’s running time

e We can derive a tighter beund than G(n log n) by cbserving that the
time for siftDown () tc run at 2 ncde varies witk the keight of the nede
in the tree, and the heights cf mest nedes are small.

e The tighter analysis relies cn the preperty that in ar n-elemert heap
there are at most [n/2"*t1] rodes of height h.

e The time required by siftDown() wken called crn a2 node of height h is
O(h), sc we can express the tctal cost of HeapSorter () as

[log n| [log n] A

> I Oy =0 > o). (1)
h=0

h=0
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Anzlysis cf HeapSorter()’s running time (ccnt.)

The last summaticn can be evaluated by differentiating and multiplying
by x both sides cof the irfirite gecmetric series (for |z| < 1)

- 1
MU ¥ = 1_ (%)
k=0 |
tc cbtair -
PN Al — (3)
— (1—2x)
in which z = 1/2 is substituted tc yield
= h 1/2
MU oh (1 — i.\mvw =2 (4)
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Anzlysis cf HeapSorter()’s running time (ccnt.)

Tkus, the rurring time cf HeapSorter () can be bounded as

[log n] b

O(n MU ma 3MUM: O(n). (5)

h=0
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e Quick Sort is a hard-split, easy-jcin methked.

e The fellowirg diagram illustrate cre step.

Quick Scrt
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Quick Scrt

o If the pivet chesern by split() divides the array intc twe (almest)
ecual-sized parts, each element is split () log n times.

| og n

n/ 2

n/ 4

e Thus, in the expected case, Quick Scrt takes G(n log n) steps.



