Comp 212 March 20, 2000

Cverview

e Examples cf siftDown() and siftUp()
e Analysis of HeapSorter()'s runring time

e Quicksort

Cemp 212

Example et siftDown ()

March 2C, 2CCC

87

98

63

52

84

76

41

59

49

36

13

79

58

43

23

Cemp 212

Example cf siftUp()

March 2C, 2CCC

103

87

98

63

52

84

76

41

59

49

36

13

79

58

43

Comp 212 March 20, 2000

Analysis ct HeapSorter()’s running time

e We can derive a tighter beund than G(n log n) by cbserving that the
time for siftDown () tc run at 2 ncde varies witk the keight of the nede
in the tree, and the heights cf mest nedes are small.

e The tighter analysis relies cn the preperty that in ar n-elemert heap
there are at most [n/2"*t1] rodes of height h.

e The time required by siftDown() wken called crn a2 node of height h is
O(h), sc we can express the tctal cost of HeapSorter () as

[log n| [log n] A

> I Oy =0 > o). (1)
h=0

h=0

Comp 212 March 20, 2000

Anzlysis cf HeapSorter()’s running time (ccnt.)

The last summaticn can be evaluated by differentiating and multiplying
by x both sides cof the irfirite gecmetric series (for |z| < 1)

- 1
MU ¥ = 1_ (%)
k=0 |
tc cbtair -
PN Al — (3)
— (1—2x)
in which z = 1/2 is substituted tc yield
= h 1/2
MU oh (1 — i.\mvw =2 (4)

h=0

Comp 212 March 20, 2000

Anzlysis cf HeapSorter()’s running time (ccnt.)

Tkus, the rurring time cf HeapSorter () can be bounded as

[log n] b

O(n MU ma 3MUM: O(n). (5)

h=0

Cemp 212

e Quick Sort is a hard-split, easy-jcin methked.

e The fellowirg diagram illustrate cre step.

Quick Scrt

P

<=P

>P

sort

<=P

>P

March 2C, 2CCC

Cemp 212

March 2C, 2CCC

Quick Scrt

o If the pivet chesern by split() divides the array intc twe (almest)
ecual-sized parts, each element is split () log n times.

| og n

n/ 2

n/ 4

e Thus, in the expected case, Quick Scrt takes G(n log n) steps.

