Current methods of wound closure, such as sutures and liquid adhesives, lead to increased scarring, cost, inconvenience, and possibility for infection. A new approach that combines nanoshell technology with laser tissue welding\(^1\) appears promising. However, the problem of user variability remains to be solved. Team Lazer has designed and built a prototype of an easily applicable device and a user-friendly software to address the concerns of safety and consistency arising from the variables of laser distance, angle, and motion along with the surface temperature of the skin.

Safety Concerns Addressed

Patient Safety
- Temperature monitoring prevents damage to skin
- Modulated laser intensity to prevent burns
- Reduced manipulation of wound → Less opportunity for infection
- Motorized angle adjustment allows for consistent application to skin

Operator Safety
- Alarms when critical temperature is reached
- Proximity to skin determined in real-time
- Automatic Shut-off system

Prototype Requirements
- **Easily Portable**
- **Maximum Safety**
- **Cost < $5 per use**
- **Cost < $1500 per device**
- Operable with minimal training
- Highly Consistent & Repeatable
- Operator friendly computer interface

Conclusions
- NanoStitch goes one step further than conventional hand-held laser tissue welding technology.
- The incorporation of real-time feedback controlled distance and temperature sensors into a user-friendly software program results in a safer and more consistent wound closure.

Acknowledgments and References