
On the Board

Reading: Start Chapter 2
Homework 1 due Monday

Expressing Algorithms (or Algorithmic Problems)

The book makes a distinction between an algorithmic problem (or a
computational problem) and the expression of an algorithm that solves the
problem. The problem is abstract, as in “sort yourselves into ascending
order by first name,” while the algorithm is concrete — a clear definition of
how to sort the set of people attending lecture on Wednesday. (The
difference is akin to the distinction between a patent and a copyright.
Patents cover novel inventions — ideas — while copyright protects the
expression of an idea — its written or spoken form.)

An algorithm must specify, in unambiguous form, a set of detailed steps that
can be followed to solve an instance of the computational problem. (Whoa
— an instance? Sorting by first names is a computational problem. Sorting
the set of people who attended class on Wednesday is an instance of a
sorting problem.) Your homework requires you to write an algorithm for
sorting the class into ascending order by first names, so that example is out
of bounds for today’s lecture. Let’s pick another one — our binary search of
the phonebook.

The algorithm is conceptually simple:

1. Consider the active range of the search to be the entire phonebook
2. Find the middle of the range
3. Compare the string being sought against the middle entry

a. If the target string is less than the middle entry, narrow the
active range to the first half of the current active range

b. Otherwise, narrow the active range to the second half
4. Repeat until the active range contains one element
5. If that element matches the target string, report success; otherwise

report failure.

COMP 200: Elements of Computer Science
Fall 2004
Lecture 3: August 26, 2004

Note that we introduced an abstraction — the active range of the phonebook.
This abstraction makes it easier to talk about the algorithm. It also works
well for the simplification that limits the search to a single letter in the book.

Unfortunately, this description is not sufficiently detailed for a computer to
execute it. Actions such as “find the middle of the range” make sense to an
educated human being, but are far more abstract than a computer can
understand. (A good working model is that a computer can do basic
arithmetic, compare two quantities, and choose among alternatives.) How
would we tell the computer to “find the middle of the range”?

Assume that the phonebook contains k names and that we number them from
1 to k. (Draw 11 item range on the board.)

We might compute the middle element’s index as the average of the bounds:

(1+11)/2 = 6

That works because we have an odd number of elements. If the range is 1 to
10, the formula produces 5.5, which is not a counting number. If we round
up to 6, the formula works. (Rounding upward to the next counting number
— or integer — is sometimes called taking the ceiling of a number.)

This formula suggests that we can represent a “range” as a pair of numbers,
the index of the lowest element in the range and the index of the highest
element in the range. Our algorithm, then, needs to set the initial bounds for
a range, and successively reduce it until it has one element. Our search
might look like

set range as [low, high]
while(low < high)

 {
 middle ceiling((low+high)/2)
 if (entry[middle] target)
 then low middle
 else high middle
 }

This description matches, sort of, our verbal description of the algorithm. It
compares the middle entry against the target string and shrinks the range
[low,high] accordingly. (Geeks call this notation “pseudocode”.)

Does this work? Let’s try it.

Non-convergence because low can never equal high. The rounding implied
by “ceiling” ensures that a two-element range remains two elements.

 Change the termination condition on the loop and test one of the two
elements.

 set range as [low, high]
while(low + 1 < high)

 {
 middle ceiling((low+high)/2)
 if (entry[middle] target)
 then low middle
 else high middle
 }

At this point, the range will be two elements. We need to test one or
both of them.

The easy thing to do is test entry[low] and entry[high] and return success or
failure accordingly.

Thus, the full algorithm is:

low 1
high number of entries in the phonebook
while(low + 1 < high)

 {
 middle ceiling((low+high)/2)
 if (entry[middle] target)
 then low middle
 else high middle
 }
 if (entry[low] = target OR entry[high] = target)
 then report success

 else report failure

There are, of course, alternate solutions.

 where low middle, use low middle+1. Change convergence test
to “middle = high”. Always test the entry for down. Convergence
from above yields a range of 2 elements & tests the lower one.
Convergence from below yields a range of 1 element and tests it.

 start out with high set to 1 more than the number of elements. It can
never converge to the original upper bound (& it never compares
against that upper bound), so this solution works correctly.

This is the level of detail needed in a program that will execute by computer.
Of course, once we have written this code and packaged it as an operation

BinarySearch: <low,high,target,table> success or failure

then other algorithms can use it as if it were an elementary operation.
(Functional abstraction, again)

Programming Language Constructs

This algorithm is sufficiently detailed that it could be converted directly into
a computer program and executed. [In fact, I did roughly that for a figure in
our book.] Notice the kinds of actions that it uses:

 low 1
high number of entries in the phonebook
while(low + 1 < high)

 {
 middle ceiling((low+high)/2)
 if (entry[middle] target)
 then low middle
 else high middle
 }
 if (entry[low] = target OR entry[high] = target)
 then report success

 else report failure

Programming languages must provide constructs for all of these purposes,
plus support for functional abstraction (in some form). In class, we will
write programs in pseudocode, using notations similar to those in the book.
In our homework, we will begin to write simple programs in Scheme, a
programming language noted for its simple syntax and easily understood
behavior.

In developing this short (12 lines) pseudocode program, we went through
many mental gyrations. The process was chaotic and disorganized. In this
class (and in COMP 210), we will introduce a simple, data-driven
methodology for writing small programs that replaces chaos with process.
The result is a systematic approach to writing programs.

Setting
values

Computing new values

Comparing values

Repetition

Conditional execution

Why Scheme?

In COMP 200, we will use Scheme for some or most of the programming
assignments. Why not use Java — the hot language of the moment — or a
more traditional language such as C or Visual Basic?

Scheme has a simple syntax that lets us cover all the syntax rules that you
will need in about ten minutes. In contrast, the other languages have
complex syntax that forces the programmer to learn (and remember) myriad
rules. That complexity forces a focus on syntax, when students are better
served by focusing on design, on function, and on debugging.

We will work, in the early stages, in a subset of Scheme that obeys the same
basic rules as high-school algebra. This value-based semantics creates a
direct connection between the meaning of the programs that you write and
the mathematics that you learned in earlier parts of your education. This
reinforcement should make some aspects of programming follow your
intuitions. In practice, this creates a comfort level with programming that
helps students focus on design rather than on trying to puzzle out the
meaning of cryptic codes.

Chapter 1 Review (we’re done with it)

1. Algorithms lie at the heart of Computer Science. Algorithmics is the
study of algorithms and their applications.

2. In describing algorithms, we need abstractions for individuals and for
values. We need mechanisms for expressing a sequence of actions, for
comparing values and using the result to choose between sequences,
and for repeatedly executing the same sequence of actions (with some
well-specified termination condition).

3. Algorithms intended for execution on a computer must be specified at
a level of detail that is sufficient to allow the computer (which only
has fairly low-level operations) to execute it.

4. No obvious relationship exists between a program’s textual length and
its running time. (In fact, one of the properties of a program that we
cannot always analyze is its running time. There exist classes of
programs where we cannot even tell if they will halt.) The following
program is an example of a short program with a long running time.

i 1
while (i < 1000000000)
{
 i i +1
}

