
On the Board
Homework 1: due today (start of class)
http://www.drscheme.org — download DrScheme for your machine

Elements of Programming

Algebraic expressions constitute a large part of most computer programs —
in almost any programming language. Thus, it seems fitting to begin
learning to program by learning to write and to evaluate algebraic
expressions. (As a side benefit, this approach ties your intuitions about
programming computers to your innate knowledge of algebra.)

Back to splitting a pizza: if a pizza costs $12 and divides into 8 slices, your
share of the pie would be:

• For 1 slice 1 x $12/8 = $12/8 = $1.50

• For 2 slices 2 x $12/8 = $24/8 = $3

• For 12 slices 12 x $12/8 = $144/8 = $18

To pay for your pizza addiction, you might take a job working in someone’s
research lab for, say, $7.35 per hour.

• 2 hours per week 2 x $7.35 = $14.70 / week or 9.8 slices/week

• 5 hours per week 5 x $7.35 = $36.75 / week or 24.5 slices/week

• 12 hours per week 12 x 7.35 = $88.20 /week or 58.8 slices/week

Because you have geek friends, someone will want to compute the surface
area of the pizza (and, subsequently, a single slice). From your high-school
education, you know that the area of a circle is pi x radius2.

• Radius 1 inch pizza area of pi * 1 * 1 = pi = 3.14159 square inches

• Radius 10 inch pizza area of pi * 10 * 10 = 314.159 square inches

• Radius 11 inch pizza area of pi * 11 * 11 = ~380 square inches

COMP 200: Elements of Computer Science
Fall 2004
Lecture 4: August 29, 2004

And a single slice of an 11 inch pizza has roughly 380/8 square inches, or
47.5 square inches of pizza.

Geeking out a little more, what area of the pizza is covered with toppings?
If the crust is one inch wide, then the area covered by toppings will be equal
to the area of a disk with radius one inch smaller than the pizza’s overall
radius.

• A 14 inch (diameter) pizza has radius 7 and topping radius 6, so it has
6 * 6 * pi = 36 * 3.14159 = ~113 square inches of toppings.

• We computed that as

pi x (d/2-1) x (d/2-1)

We could also multiply that out to get

pi/4 x (d-1) x (d-1) – pi x d + pi square inches

Which formulation is “better”?

The first formulation is preferable because it reflects the way that we (I?)
think about the problem. (d/2) is the radius. (d/2)-1 is the radius of the area
covered by topping. Pi x r x r is the formula for area of a disc.

The latter formulation is completely equivalent from an arithmetic
perspective. However, if you picked up something that used the
formulation, it might be hard to intuit the steps that got us to the formula. In
designing and building programs, we must be concerned about our ability to
go back later and understand what we have done — or what others have
done.

Computing in Scheme

Scheme is a programming language that has a particularly simple syntax and
a clean, elegant semantics — the mapping between syntax and meaning.

In Scheme, every non-trivial expression starts with a “(“ and a symbol that
explains what comes next. The symbol is either an operator, such as +, -, *,
and /, or the name of a scheme “function”. Thus, (* 1 2 3 4) multiplies
together its four arguments. The arguments can, themselves, be expressions,
allowing us to evaluate complex expressions such as the topping area of the
pizza.

Evaluate the expressions in Dr. Scheme.

Trivial expressions, like numbers and names, don’t need parentheses.

Formalizing Pizza Mathematics

If we had to type in every expression that we wanted the computer to
evaluate, every time that we needed to evaluate it, the process would be both
tedious and time-wasting. We need a mechanism that lets us save important
expressions and use them repeatedly. (Such a saved computation forms a
simple program.)

To compute a single person’s share of the cost of a pizza, we used the
algebraic formula S * $12/8, where S is the number of slices that the person
consumed (or ordered). We can formalize that into a function

Algebraic Expression Scheme Syntax Comments

5 5 Numerals are values

15 + 6 (+ 15 6) Prefix notation

1 + 2 + 3 + 4 (+ 1 2 3 4) Arbitrary arity for ops

12 ÷ 8 (/ 12 8) ÷ is written /; x is *

7.35 * 12 (* 7.35 12) Decimals

pi * 11 * 11 (* pi 11 11) It knows about pi

pi * (d/2 –1) * (d/2 –1) (* pi (- (/ d 2) 1)

 (- (/ d 2) 1))

Prefix notation must
encode precedence

Owe(S) = S * $12 / 8

Notice the dollar sign; it tells us (via dimensional analysis — the canceling
and simplification of units of measure) that the result of this function is an
amount in US currency.

This “function” reads as “Owe of S is S * 12 / 8 dollars”. We call “S” a
parameter; we might say that the function “Owe” is parameterized by “S”.

To create a Scheme program or function that models Owe, we would use the
define operator. In Dr. Scheme, we have a separate window for definitions.

(define (Owe S)
 (* S (/ 12 8)))

Typing this into the definitions window, then clicking “run” creates a
Scheme workspace where “Owe” is available in much the same way that the
basic operators are. (Owe is monadic — it takes one argument.)

We can use similar definitions to figure out our Wage for hours worked

Wage(H) = $7.35 * H

And the area of a pizza from its Radius

Area(R) = pi * R * R

And from its Diameter

AreaFromDiameter(D) = pi * (d/2) * (d/2)

And the area covered with toppings

Toppings(D) = pi * (d/2 –1) * (d/2 –1), or

 Toppings(D) = Area(d/2-1)

The second form of Toppings is preferable, given the existence of Area. It
reuses the formula from Area and creates a “single point of control” where
we can change the formula for the area of a disc. (This idea makes sense
even if the example does not. We are unlikely to change the value of pi or
its relationship to a circle.)

All of these can be defined in Scheme following the same basic syntactic
form that we used for Owe.

