
On the Board

Homework 2: Assigned Friday
Get access to Dr. Scheme (http://www.drscheme.org to download)

Back to Programming

Last class, we wrote some Scheme expressions, and introduced the notion of
a parameterized function.

(/ 12 8)

(* 1 2 3 4)

(* pi 11 11)

(define (Owe S)
      (* S (/ 12 8)))

Today, we will go back and put a veneer of organization and approach over
that haphazard lecture.  Programming in COMP 200 (and 210) involves
using a fairly rigid design methodology (laid out in Felleisen et al’s book,
How to Design Programs.)

Any nontrivial expression in Scheme begins with an open parenthesis
followed by the name of a function.  Builtin functions include the standard
arithmetic operators: sum, difference, product, division.  When we created
our own function, Owe, we were able to use it in the same way that we used
the builtin functions (or operators).

Pi is an example of a named object in scheme.  The code that defined Owe
creates another named object, the function Owe.  We can create named
objects whose value is a number (similar to pi).

(define r 11)
(* pi r r)

should produce the same result as

(* pi 11 11)
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The temptation to create named objects is big, so we need to adopt some
discipline.  First, any named object must be documented with a comment —
in scheme, we can insert a textual line by beginning it with a semicolon:

; R is the radius for our disc
(define R 11)

Scheme ignores the comment.  Comments exist for the sole purpose of
enlightening a human reader.

Anytime that we write a define (in Dr. Scheme’s definition window), it must
be accompanied by a meaningful comment.  Something such as

; This line is the required comment
(define R 11)

is not acceptable.

The first step in designing a program involves documenting its purpose. In
our design methodology, the first step of the task involves writing down
some comments that describe what function the program will perform.  We
call these two comments a contract and a purpose.

As an example, consider a simple program that calculates the first class
postage for a letter as a function of its weight, in ounces.  To begin, we must
understand the formula that the Post Office uses to calculate postage.  For
first class mail on a standard-sized envelope, the first 1 ounce costs 37 cents
and each additional ounce costs 23 cents.  (Square envelopes, oversize
envelopes, and so on cost more.)

To encode this knowledge in a scheme function, FirstClassPostage, we start
with a contract and purpose:

; FirstClassMail : num  num
; Purpose: takes a weight in ounces and returns the postage
;        in cents required for US domestic mail

 The contract is written in a cryptic form.  We read it as

“FirstClassMail takes as input a number (singular) and returns a
number.”

The words appearing between the colon and the arrow describe the
arguments of the function, in order.  The words to the right of the arrow
describe its result.

We wrote down “num” for the argument and the result.  In fact, we can
define matters more carefully. We know from the semantics of the problem



that a letter cannot have a negative weight.  We might use a notation such as
positive num or non-negative num.

To the contract and purpose, we add a header:

; FirstClassMail : posnum  num
; Purpose: takes a weight in ounces and returns the postage
;        in cents required for US domestic mail

(define  (FirstClassMail Ozs) …)

The header simply lays out the syntax (function name and name of its
argument — Ozs in this case) and leaves the function body as a set of
ellipses.

The next step is to fill in the program’s body with an expression that
correctly fulfills its purpose. To figure out that expression, it is helpful to
work several examples:

Ozs Result

1 ounce 37 cents

2 ounces 60 cents

11 ounces 267 cents

We hope that working out the examples leads us to a method of computing
the result. Equally important, the examples provide us with data for testing
our program.

In this case, one formula that appears to fit the data is

37 + (Ozs –1) * 23

In Scheme, this formula becomes

(+ 37 (* (- Ozs 1) 23))

Now, we can fill in the program and, we hope,
complete it.

Of course

(- (* Ozs 37) (* (- Ozs 1) 14))

also works, but is less straightforward



; FirstClassMail : posnum  num
; Purpose: takes a weight in ounces and returns the postage
;        in cents required for US domestic mail

(define  (FirstClassMail Ozs)
(+ 37 (* (- Ozs 1) 23)) )

At this point, we need to test our program to determine if it functions
correctly.  We can certainly type it into Dr. Scheme and check the test cases
given above against the results.

At this point, we need to explain the rewriting semantics of Scheme.

(FirstClassMail 1)

 (+ 37 (* (- 1 1) 23))

 (+ 37 (* 0 23))

 (+ 37 0)

 37

work the other examples

The rewrite rules for invoking a function and for evaluating arithmetic are
simple and intuitive. Careful application of the rewrite rules leads to a hand
evaluation of the expression that should produce the same result as
evaluating it using Dr. Scheme.

What about an argument that is less than one ounce?

Fractional arguments break the formula, so we can introduce a helper
function

; FCM:  posnum  posint
; Purpose: rounds its argument upward to the next integer and
;                invokes FirstClassMail
(define (FCM  X)

(FirstClassMail (ceiling X)))

What about an argument that is less than or equal to zero?

Both cause problems, albeit of a somewhat different nature.  It turns out that
the behavior of FirstClassMail depends on the value of its input argument.
We can represent this with a number line:

Dr Scheme copies the body of the function, replacing
the arguments with their actual values. It then
evaluates expressions innermost to outermost (and
first to last) until it can simplify the expression so
that it contains no operators or functions.  When the
expression can be simplified no further, Dr Scheme
is done and it reports the result.



0 1 2 3 4 …
 ————————————————————————->

0 37 37+23 37+46 37+69,,,

Our algebraic formula only works in the last part of the interval ( >= 2).

For the lower parts of the interval (0 and 1), simpler formulas pertain.  Thus,
we need a way to encode in the program three kinds of behavior over three
different ranges.

We can write expressions that pick out these distinct ranges

Condition              Formula
(= Ozs 0) 0
(= Ozs 1) 37
(>= Ozs 2) (* 37  (* (- Ozs 1) 23))

To express this in Scheme, we use a cond expression

; FirstClassMail: num -> num
; Purpose: takes a weight in ounces and returns the postage
;          in cents required for US Domestic Mail
(define (FirstClassMail W)
  (cond
      ((= W 0) 0)
      ((= W 1) (<= W 1)) 37)
      ((>= Ozs 2)  (+ 37 (* (- W 1) 23)))
    ))

Full set of relational operataors is
<, <=, =, >, >=.  Can use and, or,
& not to create combinations (as
in (not (= 1 2)).


