
 Structures and Aggregates

On the Board

Homework 2 due 9/15/2004
Read Chapter 2 — as of today, you have the background

Structures — A First Example

Computer displays are (now) filled with windows, menus, popup menus, and
so on. Each of these forms is (roughly) a rectangle. To represent the myriad
rectangles on the screen, we can use the notion of points on a Cartesian
plane. A window (or a menu pane) is simply two opposite corners; by
convention, the upper left and lower right corners. We must establish an
origin (by convention, the lower left corner.

To represent these points in programs that manipulate screen images, we can
use a structure. The structure needs an x coordinate and a y coordinate. In
our model, it needs no other data, although a real program might associate
more information with the point (color, intensity, kind of rectangle, other
objects that it overlays or underlies on the screen, etc.)

If I asked you to draw a point, it might look like:

In Scheme, we create such a structure as follows:

; a point is a structure
; (make-point x y)
; where x and y are numbers
(define-struct point (x y))

When this command executes (type it into the Definitions pane of Dr.
Scheme and click the Run button), it creates a set of functions that a Scheme
program (or expression) can use to manipulate points. These functions
include:

COMP 200: Elements of Computer Science
Fall 2004
Lecture 7: September 8, 2004

Comments for the methodology
and later readers …

Actual Scheme command

point
x y

make-point : number number point

point-x : point number
point-y : point number

make-point creates a new point and sets its values for x and y to the values
of its two arguments, in the order used in the define-struct construct. The
new point is an object in Scheme’s workspace that persists until it can no
longer be seen (end of the session, or loss of the last reference to it). Once
you can no longer name it, Dr. Scheme is free to reclaim any space it
occupies. Since you cannot name it, you cannot tell if Dr. Scheme maintains
it or recycles it.

point-x and point-y take as their sole argument a point. They return the value
of the appropriate field — x or y — inside the point.

define-struct creates other functions for manipulating points, but we won’t
get to discuss those for a while.

With these functions, we can write programs that create and manipulate
points. For example, to add two points,

; PointAdd: point point point
; Purpose: Add two points to produce a new point
(define (PointAdd p1 p2)
 (make-point (+ (point-x p1) (point-x p2))
 (+ (point-y p1) (point-y p2))
))

To move a point on the screen, we “translate” it by an offset in the x
direction and an offset in the y direction, precisely what PointAdd does.

Writing Programs with Structures

When we start using structures, the methodology for writing programs
becomes more complex in two ways. First, we need to think (actively) about
the kind of data that the program will encounter (will need?) and how to
represent that data. This requirement adds a step before “contract, header,
and purpose” called “data analysis.” Second, to remind ourselves of the
possible selectors that we may need, we also write a template for each
structure — a skeleton of a function that accesses that structure. It includes
all the selector functions that we may need in manipulating instances of that
structure. Now, the methodology is as follows:

Constructor

Selectors

1. Analyze the data and develop any structures that are needed; for each
structure write a function templatte

2. Write a contract, purpose, and header for the program

3. Develop a table of test data and expected answers

4. Work out the expressions required for the body of the function

HINT: This problem requires a number line, as did FirstClassMail.

5. Code up the program

6. Test the program on your data from step 3

Applying the methodology to another program, we can develop a program
that computes the area of a rectangle (as in a window on your computer
screen) from two points that define its opposite corners. Assume that the
program takes as input the upper left and lower right corners of the
rectangle, represented as points.

Step 1: Analyze the Data

Input is two points. We can use the definition of point given earlier in
the lecture

; a point is a structure
; (make-point x y)
; where x and y are numbers
(define-struct point (x y))

; Template for functions that deal with instances of point
(define (ApointFunction ThePoint)

 (… (point-x ThePoint) …
… (point-y ThePoint) …)

Step 2: Contract, Purpose, Header, Template

; RectangleArea: point point number
; Purpose: given points that define the upper left and lower right
; corners of a rectangle, compute the rectangle’s area.
(define (RectangleArea ul lr) …)

Step 3: Test Data

Inputs Results

(make-point 0 0) (make-point 2 4) 8

(make-point 0 0) (make-point –2 –4) 8

(make-point 1 1) (make-point 1 1) 0

Step 4: Work out the code body

Need to compute the sides and multiply them. Subtract x coordinates,
then y coordinates. Placement of the origin affects the order in which
we should subtract them. Can use absolute value to eliminate the
entire order issue.

The function works with points, so we can refer back to the template
to remind us of what selectors are available inside the point structure.

Something along the lines of

 (abs (- (point-x ul) (point-x lr)))

yields the size of the x dimension. Similar expression yields the size
in the y dimension. Thus, the area should be

 (* (abs (- (point-x ul) (point-x lr)))
 (abs (- (point-y ul) (point-y lr))))

Step 5: Code up the program

; RectangleArea: point point number
; Purpose: given points that define the upper left and lower right
; corners of a rectangle, compute the rectangle’s area.
(define (RectangleArea ul lr)
 (* (abs (- (point-x ul) (point-x lr)))
 (abs (- (point-y ul) (point-y lr)))
))

Step 6: Test the program on the data from Step 3

Try it yourself in Dr. Scheme or hand evaluate the expressions using
the rewriting semantics. (Expect to have a hand evaluation on the first
test. The rewriting semantics for a selector function are simple —
replace the selector and its argument, such as (point-x ul), with the
value of that field in the structure.

