E} ‘:3 COMP 200: Elements of Computer Science
R Fall 2004

' % L ecture 9: September 14, 2004
\E} Introducing Lists

On theBoard

Homework 2: due at start of class today
Reading: Chapter 2

Making Lists

Suppose we don’t know how many students are in the class and we need to
record and manipulate their grades. A list isanatural, intuitive way of
organizing open-ended collections of data, such as the set of things that a
child must take to school or the set of groceries that a shopper needs to buy.

For now, assume that all we need to keep isthe scores. Soon, we'll add the
complication of associating a name and other information with the scores.

In Scheme, we can represent alist of scores, or alist-of-numbers as:

;. alist-of-numbersis

; (make-lon num others)
: where num is anumber and othersis alist-of-numbers
(define-struct lon (num others)

The definition of list-of-numbers refers back to itsalf. rest
Each list-of-numbers contains another list, a kind of
salf-referential structure that we call a structural recursion.

To define such alist, we could write

(define example
(make-lon 1
(make-lon 2
(make-lon 3
(make-lon4))))

But, what goes inside that last slot? — the others portion of the last make-
lon in the definition. If we restrict that slot to holding alist-of-numbers, we
have an unending structural recursion. Clearly, we need a degenerate case
or abase case. The base Scheme implementation contains an object named

empty to handle just this situation. The object empty isimportant enough
that it has its own predicate — empty?

(empty? Xx) returnstrueif x isthe object empty and false otherwise.
We need to revise the definition of list-

;. alist-of-numbersis either
; empty, or astructure

; (make-lon num others)
: where num is anumber and othersis alist-of-numb
(define-struct lon (num others)

mbers

Now, we can write our example list as
(define example

(make-lon 1 Board work: Fill itin
(make-lon 2 on the original copy
(make-lon 3

(make-lon4 empty))))
Templatefor list-of-numbers

We need atemplate for programs written using list-of-numbers. The
template is somewhat more complicated than others that we have seen,
because of the self-reference and because list-of-numbersitself is defined as
either one of two alternatives — empty or alist-of-numbers.

; template for list-of-numbers

(d(e;‘grr]%(ALonFn alon) From the red arrow
((empty?aon) ...) (Self reference)
(else

... (lon-num alon) /..
... (ALonFn (lon-othersaon))...)
))

To write aprogram that counts the number of entriesin alist-of-numbers,
we start with a contract, purpose, and header.

; CountListLength: list-of-numbers — number
; Purpose: return the number of nonempty elementsin the input list
(define (CountListLength aon) ...)

Next, some test data:

I nput Answer
(define example 10
(make-lon 1
(make-lon 2
(make-lon 3
(make-lon 4 empty)))))
Empty 0

Now, filling in the template, we get something like

; CountListLength: list-of-numbers — number
; Purpose: return the number of nonempty elementsin the input list
(define (CountListLength alon)

(cond 4 From the test data
((empty? aon) 0)
(else (+ 1 (CountListLength (lon-others aon))))
)

What about a program that sums the elements in a list-of-numbers?
.. hext lecture..

