
On the Board

Homework 2: due at start of class today
Reading: Chapter 2

Making Lists

Suppose we don’t know how many students are in the class and we need to
record and manipulate their grades. A list is a natural, intuitive way of
organizing open-ended collections of data, such as the set of things that a
child must take to school or the set of groceries that a shopper needs to buy.

For now, assume that all we need to keep is the scores. Soon, we’ll add the
complication of associating a name and other information with the scores.

In Scheme, we can represent a list of scores, or a list-of-numbers as:

; a list-of-numbers is
; (make-lon num others)
; where num is a number and others is a list-of-numbers
(define-struct lon (num others)

The definition of list-of-numbers refers back to itself.
Each list-of-numbers contains another list, a kind of
self-referential structure that we call a structural recursion.

To define such a list, we could write

(define example
 (make-lon 1
 (make-lon 2
 (make-lon 3
 (make-lon 4))))

But, what goes inside that last slot? — the others portion of the last make-
lon in the definition. If we restrict that slot to holding a list-of-numbers, we
have an unending structural recursion. Clearly, we need a degenerate case
or a base case. The base Scheme implementation contains an object named

COMP 200: Elements of Computer Science
Fall 2004
Lecture 9: September 14, 2004

Introducing Lists

g rest

empty to handle just this situation. The object empty is important enough
that it has its own predicate — empty?

(empty? x) returns true if x is the object empty and false otherwise.

We need to revise the definition of list-of-numbers

; a list-of-numbers is either
; empty, or a structure
; (make-lon num others)
; where num is a number and others is a list-of-numbers
(define-struct lon (num others)

Now, we can write our example list as

(define example
 (make-lon 1
 (make-lon 2
 (make-lon 3

 (make-lon 4 empty))))

Template for list-of-numbers

We need a template for programs written using list-of-numbers. The
template is somewhat more complicated than others that we have seen,
because of the self-reference and because list-of-numbers itself is defined as
either one of two alternatives — empty or a list-of-numbers.

; template for list-of-numbers
(define (ALonFn alon)
 (cond
 ((empty? alon) …)
 (else

 … (lon-num alon) …
 … (ALonFn (lon-others alon))…)

))

To write a program that counts the number of entries in a list-of-numbers,
we start with a contract, purpose, and header.

; CountListLength: list-of-numbers number
; Purpose: return the number of nonempty elements in the input list
(define (CountListLength alon) …)

Next, some test data:

From the red arrow
(self reference)

Board work: Fill it in
on the original copy

Input Answer
(define example
 (make-lon 1
 (make-lon 2
 (make-lon 3
 (make-lon 4 empty)))))

10

 Empty 0

Now, filling in the template, we get something like

; CountListLength: list-of-numbers number
; Purpose: return the number of nonempty elements in the input list
(define (CountListLength alon)
 (cond
 ((empty? alon) 0)
 (else (+ 1 (CountListLength (lon-others alon))))

))

What about a program that sums the elements in a list-of-numbers?

.. next lecture..

From the test data

