
On the Board

Homework 2: due at start of class today
Reading: Chapter 2

Making Lists

Suppose we don’t know how many students are in the class and we need to
record and manipulate their grades. A list is a natural, intuitive way of
organizing open-ended collections of data, such as the set of things that a
child must take to school or the set of groceries that a shopper needs to buy.

For now, assume that all we need to keep is the scores. Soon, we’ll add the
complication of associating a name and other information with the scores.

In Scheme, we can represent a list of scores, or a list-of-numbers as:

; a list-of-numbers is
; (make-lon num others)
; where num is a number and others is a list-of-numbers
(define-struct lon (num others)

The definition of list-of-numbers refers back to itself.
Each list-of-numbers contains another list, a kind of
self-referential structure that we call a structural recursion.

To define such a list, we could write

(define example
 (make-lon 1
 (make-lon 2
 (make-lon 3
 (make-lon 4))))

But, what goes inside that last slot? — the others portion of the last make-
lon in the definition. If we restrict that slot to holding a list-of-numbers, we
have an unending structural recursion. Clearly, we need a degenerate case
or a base case. The base Scheme implementation contains an object named

COMP 200: Elements of Computer Science
Fall 2004
Lecture 10: September 14, 2004

Introducing Lists

g rest

Discuss the exam

The first half of these notes is a complete overlap
with Lecture 9. I repeated some of this material to
talk about termination and to get CountListLength
back in the front of everyone’s mind.
We developed a couple of list-based programs
from the template and looked at how following the
methodology lets us avoid making the mistake of
division by zero in computing the average value in
a list.

empty to handle just this situation. The object empty is important enough
that it has its own predicate — empty?

(empty? x) returns true if x is the object empty and false otherwise.

We need to revise the definition of list-of-numbers

; a list-of-numbers is either
; empty, or a structure
; (make-lon num others)
; where num is a number and others is a list-of-numbers
(define-struct lon (num others)

Now, we can write our example list as

(define example
 (make-lon 1
 (make-lon 2
 (make-lon 3

 (make-lon 4 empty))))

Template for list-of-numbers

We need a template for programs written using list-of-numbers. The
template is somewhat more complicated than others that we have seen,
because of the self-reference and because list-of-numbers itself is defined as
either one of two alternatives — empty or a list-of-numbers.

; template for list-of-numbers
(define (ALonFn alon)
 (cond
 ((empty? alon) …)
 (else

 … (lon-num alon) …
 … (ALonFn (lon-others alon))…)

))

To write a program that counts the number of entries in a list-of-numbers,
we start with a contract, purpose, and header.

; CountListLength: list-of-numbers number
; Purpose: return the number of nonempty elements in the input list
(define (CountListLength alon) …)

Next, some test data:

From the red arrow
(self reference)

Board work: Fill it in
on the original copy

Input Answer
(define example
 (make-lon 1
 (make-lon 2
 (make-lon 3
 (make-lon 4 empty)))))

10

 Empty 0

Now, filling in the template, we get something like

; CountListLength: list-of-numbers number
; Purpose: return the number of nonempty elements in the input list
(define (CountListLength alon)
 (cond
 ((empty? alon) 0)
 (else (+ 1 (CountListLength (lon-others alon))))

))

What about a program that sums the elements in a list-of-numbers?

; TotalPoints; list-of-numbers number
; Purpose: sums the numbers in a list-of-numbers
(define (Total alon) …)

Test data ,...

Input Answer
(define example
 (make-lon 1 (make-lon 2 (make-lon 3 (make-lon 4
 (make-lon 5 (… (make-lon 10 empty) …)))

55

 Empty 0

From the test data

And the code

; Total; list-of-numbers number
; Purpose: sums a list-of-numbers
(define (Total alon)
 (cond
 ((empty? alon) 0)
 (else

 (+ (lon-num alon)
 (Total (lon-others alon))))

))

Finally, we would like to compute an average for the numbers in the list. It is
tempting to apply our knowledge of the program directly and write

; ListAverage: list-of-numbers number
; Purpose: compute the average of a list-of-numbers
(define (ListAverage alon)
 (/ (Total alon) (CountListLength alon)))

What if CountListLength returns 0? The average is not defined unless the
list has at least one entry. Following the methodology leads us to the
template, which has two cases for any program that uses a list-of-numbers.
That, in turn, leads to a program such as the following:

; ListAverage: list-of-numbers number or false
; Purpose: compute the average of a list-of-numbers
(define (ListAverage alon)
 (cond
 ((empty? alon) false)
 (else
 (/ (Total alon) (CountListLength alon)))
))

