
On the Board
Homework 3: due next Monday
First Test: out Wednesday, due following Wednesday

2 hours, take home, 3 or 4 questions
Focus on short programs, as in Homeworks 2 & 3

Why did we buy that textbook?

The last three weeks have been an intense short course in writing small
programs in Scheme.  From this point forward, I expect to spend about 2/3
of the time on matters from the book and 1/3 of the time on programming.
Today, we’ll try to reconnect with Chapter 2.

Control Structures

We’ve already talked about this notion.  The book mentions sequencing,
which each of you used in Homework 1.  It mentions conditional execution,
in the form of an if-then-else construct.  While Scheme has such a construct,
we prefer to use its cond structure, which has a flat structure rather than a
hierarchical structure.  The book’s third control structure is iteration.  In
Scheme, we have seen iteration implemented as structural recursion over
lists.  (We’ll look at structural recursion over other inductive domains later
this week.)  The book also describes bounded iteration in the form of a loop
over some pre-specified range.

for  i  1 to n
      do something of value

We will use this construct in class and in homework.  We won’t program
this way in Scheme, because such loops are not a natural (integral?) part of
Scheme.  (In particular, Scheme provides poor support for arrays.  Most of
the examples you will see in the book that use bounded interation also use
vectors (1-dimensional arrays) or arrays.)
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An example of bounded iteration — Bubblesort

Chapter presents a simple sorting algorithm as its example to illustrate the
combined use of sequencing, conditional execution, and bounded iteration.
Bubblesort is one of the simplest sorts we can envision — at least in terms of
its implementation.  It is known as an “exchange sort” because the
fundamental operation in bubblesort is swapping two items that are out of
order.  The concept is simple: given a list (or vector) of items to sort, the
algorithm runs over the items and compares adjacent items.  It they are out
of order, it swaps them and continues.  Large items shuffle toward their end
of the array; small items shuffle in the other direction.

Assume a preexisting list of N items, stored in a vector “Keys”.

The notation Keys[i] refers to the ith element of the vector Keys.

for i  1 to N-1

    for j  1 to N-1
if Keys[j] > Keys[j+1]
   then swap the contents of

 Keys[j] & Keys[j+1]

Work a simple example of eight numbers.  Point out that it takes (N-1)2

comparisons and (potentially) swaps.  We can make the inner loop shorter
each time, cutting the total cost in (roughly) half.  We will come back to this
point in several weeks when we discuss algorithmic complexity.

Consider a list of numbers that are already in ascending order.  The
discussion should lead to a version that stops when no swaps occur.

Swapped  true

while (swapped)
swapped   false

    for j  1 to N-1
if Keys[j] > Keys[j+1]
   then

swap  Keys[j] & Keys[j+1]
swapped  true

Even though it looks as if the while(swapped) loop can run indefinitely, we
know from our earlier reasoning that swap can be true at most N-1 times.
Thus, the algorithm will halt after at most N iterations of the outer loop; in

Describe the inner loop first.
Then work outward to the number
of tims that it must run.

Following book’s convention
that indentation indicates
control.  Both these execute
under the control of the then
clause



exchange for that extra iteration (to detect that Keys is in order), it will
sometimes halt in fewer than N-1 iterations.

Back to Control Structures — The “Subroutine”

The book contains a lengthy discussion of “subroutines” or “subprocedures”
or “functions” and argues that using them makes sense.  To a new reader,
these ideas appear to come out of nowhere.  However, we’ve already talked
about them in class.  When discussing Homework 1 (and reading Chapter 1)
we talked about the fact that different levels of abstraction are possible and
desirable when expressing an algorithm.

Consider our Bubblesort algorithm.  What does it mean to “swap” two
elements of Keys.   The book uses destructive assignments to accomplish
this action — that is, they write down notation such as

Keys[j]  Keys[j+1]    and

j  N-1

In our Scheme programming, I have carefully avoided this explicit
representation of state — we have been writing (essentially) stateless
programs that have the same behavior on the same input every time.  (The
goal is to adhere, in our programming exercises, to the clean, crisp world of
algebra, where expressions have well-defined and somewhat intuitive
meanings).

In the stateful world, assignment views the data object as a box that contains
a value.  Thus, j looks like a box that can hold one value and Keys looks like
a collection of boxes that can hold N values.  The assignment operation, ,
replaces the value named on its left side with the value of the expression on
its right side.  The assignment

Keys[j]  Keys[j+1]    and

leaves the value of Keys[j+1] intact and copies it into Keys[j].  Of necessity,
this operation destroys the value that was in Keys[j]. Hence, we call this
operation a destructive assignment or a destructive update.  We hid all of
this baggage behind the statement “swap Keys[j] and Keys[j+1].”  To
implement that operation requires three assignments:



TemporaryHome  Keys[j]
Keys[j]  Keys[j+1]
Keys[j+1]  TemporaryHome

We could write these three lines into the algorithm, indented in an
appropriate way (of course) and have a more complete specification.  Doing
so, however, complicated the expression of the algorithm and makes it
harder to read and understand.  An alternative approach would be to create a
small program (subroutine) called swap that takes two elements of Keys and
swaps them.

Swap(a,b)
   TemporaryHome  Keys[a]
   Keys[a]  Keys[b]
   Keys[b]  TemporaryHome

Now, we can replace the line in the algorithm that tells us to swap two keys
with an invocation of “Swap” — written “swap(j,j+1)” — and produce what
is clearly a more completely defined algorithm without losing the clarity
that comes from using a higher level of abstraction to avoid the details.

The key in choosing a level of abstraction is to ensure that we do  not hide
algorithmic complexity in one of these abstract operations, such as swap. If
the implementation of swap ran over the entire Keys array (for some reason)
or did it multiple times, then the use of abstraction would reduce our
understanding of the algorithm — in particular, its cost or running time.


