

On the Board

Homework 3: Due Monday
First Test: Due Wednesday at 5PM, DH 2065

Abstraction
Last class, we talked about the general issue of abstraction and about two
specific data structures: a stack and a queue. Because stacks and queues
inherently incorporate the notion of state — the outcome of an operation on
a stack or queue depends on the history of prior actions — we had to use an
assignment (written ← in our pidgin-Algol or written set! in Scheme) in our
implementation of the stack primitives push and pop.
In a similar way, arrays and vectors (recall Keys in our bubblesort algorithm
from lecture 11) are inherently stateful. We could design a funky constructor
that built a new array from an old array and a single new element or a single
new row, but the result would be unnatural, inelegant, and (for those
reasons) difficult to use. Scheme’s support for arrays is clumsy — both
notation and operation — so we won’t use Scheme when we talk about
arrays. However, we can build interesting data structures from the
combination of language features that led to lists — the combination of
define-struct and recursion.
Trees
As an example, consider the problem of representing your ancestry.

Draw an example on the board, including at least four generations
of family. Explain cousin relationships (1st cousin, 2nd cousin, once-
removed, twice-removed, etc.)

We call this a family tree. Why is it a tree?
This tree encodes a single relationship — MyParents. The tree has
roots — the children — and leaves — the great grandparents. (Of
course, we can move the leaves back much farther in time with
research, but one can assume that we have a finite supply of humans.)

COMP 200: Elements of Computer Science
Fall 2004
Lecture 13: September 24, 2004

More Abstractions: Trees & Graphs

Looking at more members of the family, we can see that human
families form multiple overlapping trees — and that we understand
the complexity inherent in such structures. (What is a cousin? A
second cousin?)
We can also derive trees that encode the relationship MyChildren. The
two trees are related and the overall family trees are interwoven in a
complex way. Still, we can see the relationship between them and
navigate them.

As an abstract data structure, a tree consists of a set of nodes, where each
node can have zero or more children. In Scheme, we might write:

; a tree is a structure
; (make-node tree data children)
; where data holds a name (whatever that means) and
; children is a list of trees.
(define-struct tree data children)

; a list of trees is a structure
; (cons first rest)
; where first is a tree and rest is a list of trees
; (we will use Scheme’s builtin list construct)

If we want to write programs with these trees, we need a template for the
tree structure and a template for list-of-trees. The templates are interwoven
along the lines of the arrows.
 Draw the templates
Programs written along these lines take on the complexity of the templates.
If you apply the methodology and work through examples, it really is as
easy as working with the lists that we have seen.

Binary Trees
To simplify the picture, computer scientists often work with a restricted
class of trees, called binary trees. A binary tree contains nodes that have at
most two children (historically designated as left and right children).
Limiting the definition to a small number of children avoids the need for a
list in the definition which, in turn, simplifies the template and all the
programs.

; a binary tree node (btn) is either
; empty
; or a structure
; (make-node data left right)
; where data is a name (or whatever) and left and right are
; binary-tree nodes
(define-struct node (data left right))

This definition leads to a much simpler template than the arbitrary trees we
saw earlier (for ancestry).

; template for btn
(define (BTNProg fee)
 (cond
 ((empty? fee) …)
 (else
 … (node-data btn) …
 … (BTNProg (node-left btn)) …
 … (BTNProg (node-right btn)) …)
))

If data holds a number, we can easily write a program that sums all the
numbers in a tree. — work it out at the board.

The book goes into tree sort as a natural use for trees.

