
 
 
On the Board 

Homework 3:  Due today 
First test: Due Wednesday at 5pm 

Back to Programming 
As I stated last week, we will devote no more than one class in three to 
programming – that is, to talking about programs, methodologies, etc.  We 
will, of course, talk about algorithmics the rest of the time. To the extent that 
algorithmics is related to programming, you may believe that I have 
deceived you.  However, a quick tour of COMP 210’s web site will convince 
you that I am not turning this course into COMP 210. 
So far, we have learned to write simple algebraic programs, to work with 
structures, and to traverse lists.  Our list-based programming introduced the 
notion of structural recursion – a programming style that echoes the structure 
of the list definition and has the program call itself to process the self-
referential links in a list.  Our structural recursions halt because the lists are 
finite in length and the body of the code checks explicitly for the ending case 
(empty?) before handling the non-empty (self-reference through rest access 
function) case. 
Today, we will look at programs that use recursion without an explicit list. 
Recursion on the Counting Numbers 
For the purpose of today’s lecture, we will define the counting numbers as 
the unbounded set {1, 2, 3, 4, 5, …}.  Sometimes, in making arguments 
about recursion, we will find it convenient to start this set at zero, which is 
technically not a counting number.  (A set with zero elements cannot be 
counted, since it is empty.)  For today, one will suffice as a starting point. 
As with all programming in COMP 200, we start out with a data definition. 
This approach may seem silly for a concept that is as familiar as the 
counting numbers, but it will prove useful, so please bear with me.  
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; Data analysis for the Counting Numbers 
;  a counting number is either  
;    - one, or 
;    - if N is a counting number, then (add1 N) is a counting number 
;  we can use Scheme’s builtin implementation of numbers 

This definition shows that the counting numbers have a recursive structure 
that is similar to that of a list.  The data definition has two cases, one for the 
basis case – one – and another for the recursive case – (add1 N).  [With lists, 
we had a basis case of empty and a recursive case of (cons first rest).] 
The next step in our methodology, of course, is to build a template. 

; template for the counting numbers 
(define (ACountingProg fee)  

(cond 
    ((= 1  fee) … ) 
    ((< 1  fee)   … (f  (sub1  fee)) … ) 
)) 

In the template for list, the data definition shows the non-empty case to be a 
(cons first rest) and the template recurs on rest.  Rest is the inverse of cons 
and sub1 is the inverse of add1.  If cons constructs a list, rest deconstructs it 
(somewhat different notion from destruct ).  Similarly, if add1 creates a new 
counting number from one named N, then sub1 takes a counting number 
greater than one and deconstructs it to discover the counting number from 
which it was derived.   Whew. 
Let’s write a program 
Compute the sum of the counting numbers from 1 to N. 
Contract, purpose, & header 

; Sum: counting number → counting number 
; Purpose: Sum takes as its input a counting number N and returns 
;                the sum of the counting numbers from 1 to N 
(define (Sum N) …)  

What is this thing?  
Where did we find it? 



Test Data  
Input Result 

0 Undefined (not a counting number) 
1 1 
2 3 
10 55 

100 5050 
Write the expression and fill in the program body 

; Sum: counting number → counting number 
; Purpose: Sum takes as its input a counting number N and returns 
;                the sum of the counting numbers from 1 to N 
(define (Sum N)  

(cond 
    ((= 1  N)     1 ) 
    ((< 1  N)   (+ N  (Sum  (sub1  N))) ) 
)) 

 
Code it up and run it in Dr. Scheme 
Why does this program halt? 

→ Contract requires that N be a counting number; any other input has 
undefined behavior (such as 1.5 3.14159, 0, -10) 

→ Two cases on counting numbers (to reflect the data definition) 
o N = 1 returns one (and halts) 
o N > 1 

 Since N is a counting number, we know that it can be 
derived from 1 by repeated application of add1 

 Thus, repeated calls to sub1 must eventually produce a 1 
 Code always recurs on (sub1 N), so it must reach the 

case that N = 1 and, at that point, halt 
→ Key issue is the structural recursion inherent in the definition of the 

counting numbers. 



Can we do it more simply? 
The methodology produces a correct solution.  That does not say that it 
always produces the best solution.  A simpler program can be built on the 
algebraic knowledge that the sum of the counting numbers from 1 to N is 
always given by the formula  

N (N+1) / 2 
A program built on that insight will be shorter, quicker, and much harder to 
explain – unless you understand the summation. 
A Second Program On Counting Numbers 
What about a program that computes N factorial 

; Fact : counting number → counting number 
; Purpose: given a counting number N, compute N! 
(define (Fact N) …) 

Test data 
Input Result 

1 1 
2 2 
3 6 

10 3,628,800 
Write the expression for the program body, informed by the test data 
This program is the first case that we have seen where the test data does not 
point out an obvious solution.  We need to know the formula for N! 

N! is defined as  N * (N-1)! 
That definition actually looks like something we can use. 

; Fact : counting number → counting number 
; Purpose: given a counting number N, compute N! 
(define (Fact N)  

(cond 
    ((= 1  N)     1 ) 
    ((< 1  N)   (* N  (Fact (sub1  N))) ) 
)) 

 


