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Search as a Paradigm %}

Algorithms texts often focus on two problems
* Search — finding some specified object in a data structure
* Sort — ordering the elements of some data structure

These two problems have an intuitive structure and play a
critical role in many algorithmic problems

Chapter 4 of the Text
* Introduction fo algorithmic paradigms

* First set of examples are searches and sorts
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Back to Binary Trees \\\;

In Lecture 13 (Friday) we talked about trees

* Focus on binar'y trees ; a binary tree node (btn) is either
; empty
* Used to represent many things ; or a structure
; (make-node data left right)
¢ Ordered sets (dicﬁonar‘ies) ; where data is a name and left & right are btn

. (define-struct btn (data left right
¢ Syntax trees (sentence diagrams)

L I

* Search in a binary tree is an important algorithm
¢ Traversal — enumerating the nodes in some order

¢ Genuine search — efficiently finding a specific node
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Traversing a binary tree \\‘“\\

Handful of ways to fraverse a tree

* Specific pattern of recursion dictates

Y N\
a “traversal order” /b\ ¢
d e >
; Walkl : btn -> boolean ,/ \ \
; Purpose: traverse a btn 9 h i J
(define (Walk1 fee)
(cond
((empty? fee) true)
((node? fee)
(begin
(Walk1 (node-left fee))
(Walk1 (node-right fee))
(do something with fee itself) ))

)
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Produces the order
(ghdebijfca)

which we call "preorder”
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Left-to-right preorder
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Traversing a binary tree

5%
N

e

b/ \c
2\
/N ,>\.
g h i J

Produces the order
(abdghecfij)
which we call "postorder”

Left-to-right postorder

AR
D

Both of these orders are “"depth-first” searches

* Dive deeper in the tree before going laterally across a level

¢ Use a stack-like action to keep track of position in the traversal

push ( “root” node of tree )
while (stack is not empty)
current <— pop()
push (right child of current)
push (left child of current)
process current

Stack version of postorder walk

What about other orders?

COMP 200, Fall 2004



Traversing a binary free “}

Breadth-first search
* Depth-first dives to the bottom b,/ \C
* What if tree is huge? Not finite? d/ \e >
¢ Search trees in a chess game / \ \
i J

¢ Combinatorial number of nodes
¢ Consider alternatives to limited depth

* A breadth-first search exhausts a level before moving down
¢ Breadth first order wouldbe (abcdefghi )

Can we write a breadth-first search for our tree?
¢ Depth-first search models a stack; breadth-first uses a queue
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Traversing a binary free “}

Breadth-first search
* Queue is first-in, first-out

b/ \c
* Same push() pop() abstraction d/ \e >
/N N\
! J

current <— root

while (current is not empty)
push (left child of current)
push (right child of current)
process current
current <— pop()

Breadth-first search
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Traversing a binary free “}

Breadth-first search
* Queue is first-in, first-out

b/ \c
* Same push() pop() abstraction d/ \e >
/N N\
! J

current <— root

while (current is not empty)
push (left child of current)
push (right child of current)

process current Queue contains (over time)
current <= pop() [b, c][d, e] [f][g, h1Ti, j]
Breadth-first search forcing the “process” step into

alphabetical order ...
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Search in a binary tree @

Important to consider the data structure & its properties

* Unordered free
¢ Use one of the traversals — depth-first, breadth-first
¢ Amounts to exhaustive search (British Museum Algorithm)
¢ In some cases, it's the best we can do

* Ordered tree
¢ Property defined on value of node & its children
¢ Treesort produced such a tree
¢ Can limit recursion to relevant subtree (child + its descendants)

¢ Significantly reduces cost of search
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Other kinds of search &%

Finding maximal distance in a polygon (Chapter 4)

* Assume a simple convex polygon
¢+ All angles < 180 degrees

* BMA would compute distance between

all pairs
2
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Other kinds of search @

Finding maximal distance in a polygon (Chapter 4)
* Assume a simple convex polygon

¢+ All angles < 180 degrees

* BMA would compute distance between
all pairs
+ Edges: (1,2),(2,3),(3,4).(4,5).(5.1)
¢ Interior lines: (1,3),(1,4).(2,4).,(2,5),(3,5)
¢ Gets much more expensive as number of points rises

We find the answer while looking at fewer lines
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Other kinds of search \S
Finding maximal distance in a polygon (Chapter 4)
5 1. Draw a line along one edge
4
3
2
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Other kinds of search N

Finding maximal distance in a polygon (Chapter 4)
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Other kinds of search \\x%

Finding maximal distance in a polygon (Chapter 4)

1. Draw a line along one edge

2. Find farthest extent along a perpendicular

(Book's parallel line moving inward from infinity)

3. Measure 2 lines defined by the 3 points
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Other kinds of search \@

Finding maximal distance in a polygon (Chapter 4)

1. Draw a line along one edge

2. Find farthest extent along a perpendicular

(Book's parallel line moving inward from infinity)
3. Measure 2 lines defined by the 3 points

Repeat 1 to 3 for each side, in sequence

For each edge in the polygon, it considers 2 distances
* Considers 2n distances, among (potentially) n? choices

* Pentagon is a low-complexity case
¢+ Has only two non-edge distances per node
¢ Higher-degree polygons better show the worst case complexity
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Polygonal distance @
7 6 Each node has five non-edge distances
8 5 — 8 x 5/ 2 chords + 8 edges
= 28 distances by BMA
! 4 = "Better” search is 2 x 8 edges
3 = 16 distances by "better algorithm
2
Irregular octagon Bottom line:

= Using contextual knowledge can reduce
the cost of search (& other algorithms)
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