
Introduction to Search
Starting Chapter 4

COMP 200, Lecture 15

Rice University

Fall 2004

COMP 200, Fall 2004 1

Search as a Paradigm

Algorithms texts often focus on two problems

• Search — finding some specified object in a data structure

• Sort — ordering the elements of some data structure

These two problems have an intuitive structure and play a

critical role in many algorithmic problems

Chapter 4 of the Text

• Introduction to algorithmic paradigms

• First set of examples are searches and sorts



COMP 200, Fall 2004 2

Back to Binary Trees

In Lecture 13 (Friday) we talked about trees

• Focus on binary trees

• Used to represent many things

!Ordered sets (dictionaries)

!Syntax trees (sentence diagrams)

!  …

• Search in a binary tree is an important algorithm

!Traversal — enumerating the nodes in some order

!Genuine search — efficiently finding a specific node

; a binary tree node (btn) is either

;   empty

; or a structure

;   (make-node data left right)

; where data is a name and left & right are btn

(define-struct btn (data left right)

COMP 200, Fall 2004 3

Traversing a binary tree

Handful of ways to traverse a tree

• Specific pattern of recursion dictates

a “traversal order”

a

b

d

g h

e

c

f

ji
; Walk1 : btn -> boolean

; Purpose: traverse a btn

(define (Walk1 fee)

    (cond

         ((empty? fee)   true)

         ((node?  fee)

             (begin

                 (Walk1 (node-left fee))

                 (Walk1 (node-right fee))

                 (do something with fee itself) ))

     ))



COMP 200, Fall 2004 4

Traversing a binary tree

Handful of ways to traverse a tree

• Specific pattern of recursion dictates

a “traversal order”

a

b

d

g h

e

c

f

ji
; Walk1 : btn -> boolean

; Purpose: traverse a btn

(define (Walk1 fee)

    (cond

         ((empty? fee)   true)

         ((node?  fee)

             (begin

                 (Walk1 (node-left fee))

                 (Walk1 (node-right fee))

                 (do something with fee itself) ))

     ))

Produces the order

(g h d e b i j f c a)

which we call “preorder”

Left-to-right preorder

COMP 200, Fall 2004 5

Traversing a binary tree

Handful of ways to traverse a tree

• Specific pattern of recursion dictates

a “traversal order”

a

b

d

g h

e

c

f

ji
; Walk1 : btn -> boolean

; Purpose: traverse a btn

(define (Walk1 fee)

    (cond

         ((empty? fee)   true)

         ((node?  fee)

             (begin

                 (do something with fee itself)

                 (Walk1 (node-left fee))

                 (Walk1 (node-right fee)) ))

     ))



COMP 200, Fall 2004 6

Traversing a binary tree

Handful of ways to traverse a tree

• Specific pattern of recursion dictates

a “traversal order”

a

b

d

g h

e

c

f

ji
; Walk1 : btn -> boolean

; Purpose: traverse a btn

(define (Walk1 fee)

    (cond

         ((empty? fee)   true)

         ((node?  fee)

             (begin

                 (Walk1 (node-left fee))

                 (Walk1 (node-right fee))

                 (do something with fee itself) ))

     ))

Produces the order

(a b d g h e c f i j)

which we call “postorder”

Left-to-right postorder

COMP 200, Fall 2004 7

Traversing a binary tree

Both of these orders are “depth-first” searches

• Dive deeper in the tree before going laterally across a level

!Use a stack-like action to keep track of position in the traversal

What about other orders?

push ( “root” node of tree )

while (stack is not empty)

    current " pop()

    push (right child of current)

    push (left child of current)

    process current

Stack version of postorder walk



COMP 200, Fall 2004 8

Traversing a binary tree

Breadth-first search

• Depth-first dives to the bottom

• What if tree is huge?  Not finite?

!Search trees in a chess game

!Combinatorial number of nodes

!Consider alternatives to limited depth

• A breadth-first search exhausts a level before moving down

!Breadth first order would be (a b c d e f g h i j)

Can we write a breadth-first search for our tree?

!Depth-first search models a stack; breadth-first uses a queue

a

b

d

g h

e

c

f

ji

COMP 200, Fall 2004 9

Traversing a binary tree

Breadth-first search

• Queue is first-in, first-out

• Same push() pop() abstraction

a

b

d

g h

e

c

f

ji
current " root

while (current is not empty)

    push (left child of current)

    push (right child of current)

    process current

    current " pop()

Breadth-first search



COMP 200, Fall 2004 10

Traversing a binary tree

Breadth-first search

• Queue is first-in, first-out

• Same push() pop() abstraction

a

b

d

g h

e

c

f

ji
current " root

while (current is not empty)

    push (left child of current)

    push (right child of current)

    process current

    current " pop()

Breadth-first search

Queue contains (over time)

  [b, c] [d, e] [f] [g, h] [i, j]

forcing the “process” step into

alphabetical order …

COMP 200, Fall 2004 11

Search in a binary tree

Important to consider the data structure & its properties

• Unordered tree

!Use one of the traversals — depth-first, breadth-first

!Amounts to exhaustive search (British Museum Algorithm)

! In some cases, it’s the best we can do

• Ordered tree

! Property defined on value of node & its children

!Treesort produced such a tree

!Can limit recursion to relevant subtree        (child + its descendants)

!Significantly reduces cost of search



COMP 200, Fall 2004 12

Finding maximal distance in a polygon  (Chapter 4)

• Assume a simple convex polygon

!All angles < 180 degrees

• BMA would compute distance between

   all pairs

Other kinds of search

1

2

3

4

5

COMP 200, Fall 2004 13

Finding maximal distance in a polygon  (Chapter 4)

• Assume a simple convex polygon

!All angles < 180 degrees

• BMA would compute distance between

   all pairs

!Edges: (1,2),(2,3),(3,4),(4,5),(5,1)

! Interior lines: (1,3),(1,4),(2,4),(2,5),(3,5)

!Gets much more expensive as number of points rises

We find the answer while looking at fewer lines

Other kinds of search

1

2

3

4

5



COMP 200, Fall 2004 14

Finding maximal distance in a polygon  (Chapter 4)

Other kinds of search

1

2

3

4

5 1. Draw a line along one edge

COMP 200, Fall 2004 15

Finding maximal distance in a polygon  (Chapter 4)

Other kinds of search

1

2

3

4

5



COMP 200, Fall 2004 16

Finding maximal distance in a polygon  (Chapter 4)

Other kinds of search

1

2

3

4

5 1. Draw a line along one edge

2. Find farthest extent along a perpendicular

(Book’s parallel line moving inward from infinity)

3. Measure 2 lines defined by the 3 points

COMP 200, Fall 2004 17

Finding maximal distance in a polygon  (Chapter 4)

For each edge in the polygon, it considers 2 distances

• Considers 2n distances, among (potentially) n2 choices

• Pentagon is a low-complexity case

! Has only two non-edge distances per node

! Higher-degree polygons better show the worst case complexity

Other kinds of search

1

2

3

4

5 1. Draw a line along one edge

2. Find farthest extent along a perpendicular

(Book’s parallel line moving inward from infinity)

3. Measure 2 lines defined by the 3 points

Repeat 1 to 3 for each side, in sequence



COMP 200, Fall 2004 18

Polygonal distance

1

2
3

4

5

67
8

Irregular octagon

Each node has five non-edge distances

# 8 x 5 / 2 chords + 8 edges

# 28 distances by BMA

# “Better” search is 2 x 8 edges

# 16 distances by “better algorithm

Bottom line:

# Using contextual knowledge can reduce

    the cost of search (& other algorithms)


