Introduction to Search
Starting Chapter 4

COMP 200, Lecture 15

Rice University

Fall 2004
Search as a Paradigm %}

Algorithms texts often focus on two problems
* Search — finding some specified object in a data structure
* Sort — ordering the elements of some data structure

These two problems have an intuitive structure and play a
critical role in many algorithmic problems

Chapter 4 of the Text
* Introduction fo algorithmic paradigms

* First set of examples are searches and sorts

COMP 200, Fall 2004

Back to Binary Trees \\\;

In Lecture 13 (Friday) we talked about trees

* Focus on binar'y trees ; a binary tree node (btn) is either
; empty
* Used to represent many things ; or a structure
; (make-node data left right)
¢ Ordered sets (dicﬁonar‘ies) ; where data is a name and left & right are btn

. (define-struct btn (data left right
¢ Syntax trees (sentence diagrams)

L I

* Search in a binary tree is an important algorithm
¢ Traversal — enumerating the nodes in some order

¢ Genuine search — efficiently finding a specific node

COMP 200, Fall 2004 2

Traversing a binary tree \\‘“\\

Handful of ways to fraverse a tree

* Specific pattern of recursion dictates

Y N\
a “traversal order” /b\ ¢
d e >
; Walkl : btn -> boolean ,/ \ \
; Purpose: traverse a btn 9 h i J
(define (Walk1 fee)
(cond
((empty? fee) true)
((node? fee)
(begin
(Walk1 (node-left fee))
(Walk1 (node-right fee))
(do something with fee itself)))

)

COMP 200, Fall 2004 3

Traversing a binary tree

Handful of ways to fraverse a tree

* Specific pattern of recursion dictates

a “traversal order"”

; Walk1 : btn -> boolean
; Purpose: traverse a btn
(define (Walk1 fee)
(cond
((empty? fee) true)
((node? fee)
(begin
(Walk1 (node-left fee))
(Walk1 (node-right fee))
(do something with fee itself)))
)

COMP 200, Fall 2004

Traversing a binary tree

Handful of ways to fraverse a tree

* Specific pattern of recursion dictates

a “traversal order"”

; Walk1 : btn -> boolean
; Purpose: traverse a btn
(define (Walk1 fee)
(cond
((empty? fee) true)
((node? fee)
(begin
(do something with fee itself)
(Walk1 (node-left fee))
(Walk1 (node-right fee))))

)

COMP 200, Fall 2004

@

b/ \c
Y
Q/d\h i>\

Produces the order
(ghdebijfca)

which we call "preorder”

]

Left-to-right preorder

@

b/ \c
Y
Q/d\h i>\

]

Traversing a binary tree

Handful of ways to fraverse a tree

* Specific pattern of recursion dictates

a “traversal order"”

; Walk1 : btn -> boolean
; Purpose: traverse a btn
(define (Walk1 fee)
(cond
((empty? fee) true)
((node? fee)
(begin
(Walk1 (node-left fee))
(Walk1 (node-right fee))
(do something with fee itself)))
)

COMP 200, Fall 2004

Traversing a binary tree

5%
N

e

b/ \c
2\
/N ,>\.
g h i J

Produces the order
(abdghecfij)
which we call "postorder”

Left-to-right postorder

AR
D

Both of these orders are “"depth-first” searches

* Dive deeper in the tree before going laterally across a level

¢ Use a stack-like action to keep track of position in the traversal

push (“root” node of tree)
while (stack is not empty)
current <— pop()
push (right child of current)
push (left child of current)
process current

Stack version of postorder walk

What about other orders?

COMP 200, Fall 2004

Traversing a binary free “}

Breadth-first search
* Depth-first dives to the bottom b,/ \C
* What if tree is huge? Not finite? d/ \e >
¢ Search trees in a chess game / \ \
i J

¢ Combinatorial number of nodes
¢ Consider alternatives to limited depth

* A breadth-first search exhausts a level before moving down
¢ Breadth first order wouldbe (abcdefghi)

Can we write a breadth-first search for our tree?
¢ Depth-first search models a stack; breadth-first uses a queue

COMP 200, Fall 2004 8

Traversing a binary free “}

Breadth-first search
* Queue is first-in, first-out

b/ \c
* Same push() pop() abstraction d/ \e >
/N N\
! J

current <— root

while (current is not empty)
push (left child of current)
push (right child of current)
process current
current <— pop()

Breadth-first search

COMP 200, Fall 2004 9

Traversing a binary free “}

Breadth-first search
* Queue is first-in, first-out

b/ \c
* Same push() pop() abstraction d/ \e >
/N N\
! J

current <— root

while (current is not empty)
push (left child of current)
push (right child of current)

process current Queue contains (over time)
current <= pop() [b, c][d, e] [f][g, h1Ti, j]
Breadth-first search forcing the “process” step into

alphabetical order ...

COMP 200, Fall 2004 10
Search in a binary tree @

Important to consider the data structure & its properties

* Unordered free
¢ Use one of the traversals — depth-first, breadth-first
¢ Amounts to exhaustive search (British Museum Algorithm)
¢ In some cases, it's the best we can do

* Ordered tree
¢ Property defined on value of node & its children
¢ Treesort produced such a tree
¢ Can limit recursion to relevant subtree (child + its descendants)

¢ Significantly reduces cost of search

COMP 200, Fall 2004 1

Other kinds of search &%

Finding maximal distance in a polygon (Chapter 4)

* Assume a simple convex polygon
¢+ All angles < 180 degrees

* BMA would compute distance between

all pairs
2
COMP 200, Fall 2004 12
Other kinds of search @

Finding maximal distance in a polygon (Chapter 4)
* Assume a simple convex polygon

¢+ All angles < 180 degrees

* BMA would compute distance between
all pairs
+ Edges: (1,2),(2,3),(3,4).(4,5).(5.1)
¢ Interior lines: (1,3),(1,4).(2,4).,(2,5),(3,5)
¢ Gets much more expensive as number of points rises

We find the answer while looking at fewer lines

COMP 200, Fall 2004 13

Other kinds of search \S
Finding maximal distance in a polygon (Chapter 4)
5 1. Draw a line along one edge
4
3
2
COMP 200, Fall 2004 14
N

Other kinds of search N

Finding maximal distance in a polygon (Chapter 4)

COMP 200, Fall 2004 15

Other kinds of search \\x%

Finding maximal distance in a polygon (Chapter 4)

1. Draw a line along one edge

2. Find farthest extent along a perpendicular

(Book's parallel line moving inward from infinity)

3. Measure 2 lines defined by the 3 points

COMP 200, Fall 2004 16
Other kinds of search \@

Finding maximal distance in a polygon (Chapter 4)

1. Draw a line along one edge

2. Find farthest extent along a perpendicular

(Book's parallel line moving inward from infinity)
3. Measure 2 lines defined by the 3 points

Repeat 1 to 3 for each side, in sequence

For each edge in the polygon, it considers 2 distances
* Considers 2n distances, among (potentially) n? choices

* Pentagon is a low-complexity case
¢+ Has only two non-edge distances per node
¢ Higher-degree polygons better show the worst case complexity

COMP 200, Fall 2004 17

Polygonal distance @
7 6 Each node has five non-edge distances
8 5 — 8 x 5/ 2 chords + 8 edges
= 28 distances by BMA
! 4 = "Better” search is 2 x 8 edges
3 = 16 distances by "better algorithm
2
Irregular octagon Bottom line:

= Using contextual knowledge can reduce
the cost of search (& other algorithms)

COMP 200, Fall 2004 18

