
 
 
On the Board 
 Homework 4: available Monday 
Back to Algorithms 
Chapter 4 of the book focuses on different strategies for solving algorithmic 
problems. Along the way, it introduces new algorithmic problems and their 
solutions (as examples that are amenable to solution with a variety of 
methods).  Some of them will appear contrived; others will be of obvious 
utility. 
Consider the problem of finding the maximal value in a list.   

Draw an 8 element list on the board. 
The obvious algorithm runs down the list and keeps track of the smallest 
value. 

max ← list[1] 
for i ← 2 to n 
    if (max < list[i]) 
        then max ← list[i] 
; at this point, max holds the biggest element in the list  

The algorithm assumes that the list has at least one element. (To develop this 
program using the methodology, we need to invent a new definition for list, 
a “non-empty-list”.  With a non-empty-list, we can derive the Scheme 
version of this program from the template-based, data-driven methodology.  
However, the simple pidgin-Algol above is equally clear and much less 
trouble to explain.)  We can find the smallest element in an analogous way. 

min ← list[1] 
for i ← 2 to n 
    if (min > list[i]) 
        then min ← list[i] 
; at this point, min holds the smallest element in the list  
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These two algorithms take the expected amount of time — each must look at 
every element in the list to determine if it is the extreme value (max or min).  
Stepping back from the algorithms, it seems reasonable to expect that we 
must look at each value to find the max (or min); so these two algorithms are 
reasonably efficient. 
Divide and Conquer 
Divide and conquer is an algorithmic strategy that we can apply to many 
algorithmic problems.  The name is intuitive and hints at the fact that the 
strategy has much broader application than algorithmic problem solving. 
Divide and conquer algorithms follow a simple pattern: 
1. Split the problem instance into smaller parts until solution is easy 
2. Combine the solutions for the smaller parts into a solution for the whole. 
A divide-and-conquer approach to finding the maximum element in a list is 
easy to derive and to understand: 
1. Divide step: split the list into smaller lists (recursively) until each list has 

one element.  For a one-element list, the element’s value is the 
maximum. 

2. Combine step: to find the maximum of two smaller lists, take the larger 
of their maximum values. 

Making it work:  We need to introduce the notion of a pair (a structure of 
two counting numbers) to represent ranges inside a list.  Assume that a pair 
has two elements, lower and upper.  In Scheme, we would write 

(define-struct pair (lower upper)).) 
Given pairs, we might write the divide and conquer Max as 



 ; assume the list has an even length 
max(fee) ; where fee is a pair  
     if (fee-lower = fee-upper)  
         then return list[fee-lower] 
         else  
        { 
            x ← max((make-pair  
                                  fee-lower  

                        floor((fee-upper — fee-lower) /2))) 
           y ← max((make-pair  

                        ceiling((fee-upper — fee-lower) /2)) 
                        fee-upper) 
  if x < y  
     then return x 
     else  return y 

} 
; to invoke max, we simply call it with the full range 
max(make-pair 1 k)   

What happens if the list is not a power of two in length?  Some piece of the 
recursion simply finds the degenerate (size one) case more quickly than 
others.  If the list has odd length, we can write a wrapper function that tests 
for it and checks that last element against max(rest of the list) — at no extra 
cost. 

wrapper(fie) ; where fie is a pair 
    if (fie-lower = fie-upper) 
        then return list[fie-lower]  ; one element 
    else if (fie-upper – fie-lower + 1) is even 
        then return max(fie) 
        else    
        { 
            x ← max( (make-pair fie-lower (fie-upper – 1)) 
            if list[fie-upper] < x 
                then return x 
       else return list[fie-upper] 
        } 

Did divide-and-conquer improve the algorithm?  Not in any obvious way.  
The algorithm still looks at each element in the list and makes a comparison 
for each element in the list.  The code is actually much more complex than 



the simple list-traversing loop that we wrote out for the obvious algorithm.  
So, what’s the big deal? 
A Win for Divide-and-Conquer 
If, instead of max, we wanted to compute both max and min, we could use 
the same approach.  Conceptually, we would divide the list down to the 
point where each list has two elements and return a pair (min, max).  To 
combine the pairs for two lists, it suffices to compare the minimum values 
against each other and the maximum values against each other.  The overall 
code returns a pair, (min, max) for the whole list.   
This approach does fewer comparisons than running separate max and min 
calculations, since it only performs one comparison on the degenerate lists 
of length two.  Divide and conquer produced a better answer than writing the 
obvious list traversal code. 


