
 
 
On the Board 
 Homework 3: handed back 
 Homework 4: available by Wednesday 
 Exam 1: not yet graded 
Back to Algorithms 
Last class, we looked at the computation of max, min, and talked about the 
computation of MaxMin. We saw simple algorithms for max and min, then 
built up a divide and conquer algorithm for max or min.  The added 
complexity of the divide and conquer approach did not help us much with 
max or min — in fact, the complex algorithm was no faster than the simplest 
algorithm.  I pointed out, however, that finding both the max and the min at 
the same time can be faster in a divide and conquer algorithm than the sum 
of the costs of the straightforward algorithms.  
Review: Divide and Conquer 
Divide and conquer is an algorithmic strategy that we can apply to many 
algorithmic problems.  The name is intuitive and hints at the fact that the 
strategy has much broader application than algorithmic problem solving. 
Divide and conquer algorithms follow a simple pattern: 
1. Split the problem instance into smaller parts until solution is easy — the 

divide step.  Almost always, balance in the size of the smaller parts is 
important to the efficiency of the resulting algorithm. 

2. Combine the solutions for the smaller parts into a solution for the whole 
— the combine step. The algorithm must combine solutions to 
subproblems in a quick and efficient way. 

Sorting with Divide and Conquer 
The same insights can lead us to an efficient sorting technique, often called a 
merge sort.  Assume, again, an even-length list.  
1. Divide step: recursively divide the lists down to lists of length one.  At 

each step. 
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2. Combine step: Given two sorted lists, merge them together to produce a 
single sorted list.  The code to handle this step involves dealing with 
arbitrary relationships among the first remaining element in each list. 
Four real cases:  

• First < second:  remove head of first list and add it to the end of the 
result list 

• First ≥ second:  remove head of second list and add it to the end of 
the result list 

• First is exhausted, second is not: copy the rest of second onto the 
end of the result list 

• Second is exhausted, first is not: copy the rest of the first list onto 
the end of the result list 

Given these four cases in Merge, we can write the merge sort as a 
recursion, much like the max algorithm, where the recursion calls  
Merge(first half of list, second half of list) 

Of course, we’ve skipped many details along the way. 
In particular, we need to manage the data and data movement.  In an 
environment where we can see the data movement, we don’t want to create 
new lists at each step.  We can get away with two vectors and always work 
from one to the other.  An easier way to envision this process is to merge 
into a temporary location and copy back into the final location. (This 
approach doubles the data movement but simplifies understanding.) 
Code for Mergesort 
Sort is easy: 

sort ( list ) 
    if (list has one element) 
        then return a list containing that element 
        else 
   split the list into two lists, left and right 
            return merge( sort( left), sort( right ) ) 

Of course, list manipulation is easy in Scheme — we can use cons, first, and 
rest.  To split the lists, we simply toss one element onto left and the next 
onto right, and keep repeating this pattern until we encounter empty. 



In pidgin-Algol, with the list stored in a vector, the list-management details 
are harder.  Assume that we can represent a range in the vector with a pair 
(lower, upper).  Then, we can write the code as  

sort ( lower, upper  ) ; where lower & upper describe a range in keys 
   if (lower = upper) 
       then return fee  ; a one-element list is always sorted 
       else 
            midpt ← floor( (lower+upper-1) / 2) 
            merge( sort( lower, midpt ) , sort( midpt+1, upper ) 

Merge is harder.  It must take two pairs that represent sorted lists and return 
a single sorted list.  Conceptually: 

merge ( leftlist, rightlist ) 
    while (neither leftlist nor rightlist is empty) 
         if (first (leftlist) < first (rightlist)) 
             then  
   move first(leftlist) to outputlist 
         else if (first (leftlist) ≥ first (rightlist)) 
             then  
   move first(righttlist) to outputlist 
     ;  one list is empty 
      if (leftlist is empty) 
          move rest of leftlist to outputlist 
      else if (rightlist is empty) 
          move rest of rightlist to outputlist 
      ;  and … 
      return outputlist 
 

Working out the details with (lower,upper) pairs to represent the lists 
involved a fair amount of detail.  Working out the meaning of “move” in that 
context requires either a temporary array — into which we can move the 
values — and an operation that copies them back into the Keys array, or a 
more complex scheme for managing the lists — such as swapping between 
two arrays at each level in the recursion.  [Draw this on the board.] 
How well does this work? At each level in the recursion tree, Merge 
performs n comparisons, where n is the length of the original list.  The 
recursion can only go n/2 deep. (Dividing a list of length n in half will recur 
at most n/2 times.)  Thus, the total number of comparisons must be n * n/2 



or n2/2.  This is half the number of comparisons that we found in the worst 
case for bubblesort, so the algorithm has promise. 
Greedy Algorithms 
Many algorithmic problems involve trying to minimize or maximize some 
measure of utility.  In making change for an amount less than one dollar, the 
classic algorithm tries to minimize the number of coins that must be used. 
The algorithm is simple: 

1. Use as many quarters as possible 
2. Use as many dimes as possible 
3. Use as many nickels as possible 
4. Finish the amount with pennies 

Of course, we can add fifty-cent pieces in the obvious way.  This simple 
algorithm is an example of a dynamic greedy solution.  We don’t plan out 
the number of coins.  We take the largest benefit first — covering as many 
cents of the amount with the largest coins at each step.  Because we only use 
four (or five) kinds of coin, it halts quickly — four decisions.  It always 
produces the optimal answer. 
Greedy algorithms arise in many contexts.  Driving from Rice to the Galleria 
is one of my favorites.  At each intersection, a hurried driver decides to go 
straight, right, or left.  That choice is made on the basis of local traffic 
conditions plus the history of all past decisions made since leaving Rice — 
in essence, where the car currently sits.  The decision-maker is ignorant, 
except in a general way, of local traffic conditions at the next intersection on 
each of the possible paths.  
Graphs 
The driving problem, like many problems that Computer Scientists 
formulate, can be represented with a discrete structure called a graph. To a 
Computer Scientist, a graph is a set of nodes (or vertices) and a set of edges.  
Edges connect nodes in the graph.  [Draw an example graph on the board.] 
The trees that we considered last week are specialized forms of a graph.  A 
binary tree (recall the ancestor tree) has the property that each node has two 
descendants and a single parent.  These properties ensure that no sharing 
occurs — each node has a clear and unique ancestry. 
We can formulate the driving problem as a graph, where the vertices 
represent intersections in the road system and the edges represent blocks of 
road between intersections.  If we associate a number (or weight) with each 



edge that represents the number of seconds required to drive that stretch of 
road, including average stop-light delays, then the problem becomes one of 
finding a sequence of edges from the vertex for Rice to the vertex for the 
Galleria that has minimal total edge-weights. 
A greedy approach does moderately well on this problem. 


