
 
 
On the Board 

Homework 4: Available today, due Friday October 15, 2004 
One Last Word on Mergesort 
The key notion that I was trying to get across with the mergesort example 
was that a single abstraction may not work well for all the parts of a 
problem.  The divide step of mergesort is trivial in a vector and pairs 
representation (using a vector to hold the data and <lower,upper> pairs to 
represent the subranges of the vector).  That same representation leads to a 
complicated implementation for the combine step—it must copy the list 
elements into a new vector in order to merge them & then copy them back 
into the space that they occupy in the vector of Keys.1 
Using Scheme’s list abstraction (cons, first, and rest) makes the combine 
step simple and elegant (see the code posted with the notes for lecture 17).  
However, the divide step becomes conceptually complex because the list 
abstraction in Scheme only lets the program access the front of the list.  The 
key to implementing the divide step is to recognize that the algorithm can 
split the data any way that it wants, rather than keeping elements that start 
out in contiguous positions next to each other.  Thus, the two posted 
solutions split a list by tossing one element to the left and the other to the 
right, creating (roughly) equal-size lists but discarding the notion of 
contiguity.  
Greedy Algorithms 
The next category of algorithm that Chapter 4 covers is the so-called 
“greedy” algorithms.  Last class, we looked at my favorite instance of a 
greedy algorithm —driving from Rice to the Galleria (a weighted and 
simplified version of the Manhattan Grid problem).  On that problem, the 

                                                
1 The alternative is to use two equal-size vectors, one as the source and the other as the 
destination for these copies.  At each generation of the recursion — that is lists of 1, lists of 2, 
lists of 4, and so on — the algorithm can swap the designation of source and destination.  This 
swapping scheme eliminates half the data movement, but complicates the conceptual picture. 
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greedy algorithm will produce an approximate solution — not guaranteed to 
be the best solution — while considering many fewer paths than would be 
required to examine every possible path.  (I think of the greedy algorithm as 
a realistic solution because it is an online solution — it makes decisions as it 
encounters information.  An offline solution — one that has access to all the 
information at the outset — can do better.  Driving, unfortunately, is an 
online problem.  We will see an offline version of the problem later.) 
An Example 
To see the distinction between a problem where the greedy algorithm 
produces the best answer and one where it may not, consider a simple 
problem that arises in everyday academic life — classroom scheduling.  
While the full-blown problem is complex — when is the best time to offer 
COMP 200 — the subproblem of assigning rooms to classes at a given hour 
is not. 

Class 
Sizes 

 Room 
Sizes 

19  150 
70  100 
25  75 
25  75 
95  30 
6  25 

132  25 
74  15 

A simple greedy algorithm will do well on this problem.   
In decreasing size order, assign each class to the largest available 
room.  If that room is too small, mark the class unassigned. 

This algorithm works and is optimal.  If an assignment exists that satisfies 
the list of class sizes, it will find one such assignment.  It is fast. We must 
sort the class size list; after that, the algorithm requires constant time for 
each class.  Its overall complexity is cost of sorting N elements + N. 
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Problems with Simple Greedy 
This simple greedy algorithm is wasteful.  In an hour when we have more 
classrooms than classes, it will ensure that the largest classrooms are 
booked. Aesthetically, that is a shame. Teaching 10 students in a room that 
holds 75 is less pleasant than teaching 10 students in a more intimate setting. 
(As a teacher, you don’t want the front of the class to be empty.)   
A variation on this algorithm can create a more pleasing assignment. 

for each class C, 
   for each unassigned room R in ascending order by size 
 if C fits in R then 
              assign C to R 
     stop iterating over rooms      (break out of inner loop) 

This version of the algorithm, sometimes called a best-fit assignment, places 
each class in the smallest remaining room that will hold it.  We might get 
slightly different results if we consider the classes C in different orders 
(largest to smallest, smallest to largest, or unsorted).  However, because it 
uses the smallest room possible for each class, it will find an assignment if 
one exists.  The cost of this algorithm is, in the worst case, |C| x |R|, or the 
product of the number of classes and the number of rooms.  (At each case, 
the algorithm might need to traverse the entire list of unassigned rooms.  The 
first time, that list has |R| elements.  The next time, it has |R|  - 1 elements, 
and so on.  



Adding Constraints 
What happens to the problem if we add other considerations? For example, 
some classes need computer projection equipment.  What happens if some 
classes need special resources and not all rooms contain those resources? 
 

Class 
Sizes 

 Room 
Sizes 

19  150p 
70  100 
25  75p 
25  75 
95  30 
6p  25p 

132p  25 
74p  15 

 
Can we modify our algorithm to handle the constrained problem well? 

The simple greedy technique will fail. The best-fit greedy technique 
given earlier will fail. 
Easy solution is to place constrained classes first, using the best-fit 
algorithm, then to place the other classes.  However, as this example 
shows, we can construct problems that are not satisfiable. 

What about harder constraints?  Faculty members prefer to teach, if possible, 
in classrooms that are physically close to their offices.  This constraint 
creates a complicated web of calculations — the obvious goal is to 
minimize, over all classes, the distance from the instructor’s office to their 
assigned classroom.  That computation looks much to complex for greedy to 
guarantee an optimal solution. The interesting question is: how good (or 
bad) is the greedy solution? 
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Another Example - Minimum Cost Spanning Trees 
A spanning tree of a graph is a connected set of edges that touch every 
vertex and contains no cycles (exactly one path from a to b).  Given an 
arbitrary graph with weighted edges, construct a minimum cost spanning 
tree. A greedy algorithm does as well as any algorithm on this problem. 

TreeNodes ← arbitrary node n 
TreeEdges ← Ø 
while (|TreeNodes| < number of nodes in the graph) 
     let e = (x,y) be the lowest cost edge such that  
           x is in TreeNodes and y is not 
     add y to TreeNodes  
     add (x,y) to TreeEdges 

The cost of this algorithm depends on the structure of the graph. The 
algorithm always runs through the while loop N times, where N is the 
number of nodes in the graph.  Each time it executes the “let e be the lowest 
cost edge” step, it examines a subset of the edges — the unused edges that 
leave a node in TreeNodes.  The details of how to implement this step are 
critical to the cost of the algorithm.   
The obvious algorithm looks at all the edges leaving TreeNodes. This 
strategy makes the step cost |Edges| time. 
A better strategy maintains a list of unused edges leaving TreeNodes.  That 
idea reduces the cost somewhat, but the worst case is the same.  (Each time 
we add an edge (x,y) to the tree, we add to the list all of the other edges that 
leave leaving its destination node, y. 
If the list of unused edges is kept in sorted order by cost, we can find the 
next edge in constant time — it is the first edge in the list. Of course, this 
scheme requires that we insert the edges in sorted order. Chapter 4 discusses 
one data structure that can maintain such a list — a heap or priority queue.


