
 
 
On the Board 

Homework due today 
Reading — Chapters 5 & 6 

Important Properties of Algorithms 
In Chapter 4, we saw a number of approaches to algorithm design — graph 
traversals, divide and conquer, greedy, dynamic planning.  Speaking in 
broad terms, two properties of an algorithm should be critical concerns (in 
this order) 
• Correctness — The algorithm should solve the problem and produce a 

correct answer.  Correctness is the focus of Chapter 5. 
For some problems, such as phonebook lookup, the correctness criterion 
is simple and well defined:  “Joe” is in the phonebook or he is not. 
Sorting (as in bubblesort, mergesort, and insertion sort) is equally well 
defined. For other problems, the criterion may not be well defined: 
navigating from Rice to the Galleria, the greedy algorithm will make 
locally optimal decisions that may lead to globally suboptimal solutions.  
Is the suboptimal solution wrong?  It leads to the Galleria. It is faster than 
some of the paths. The greedy algorithm approximates the minimal-cost 
path with a lower cost algorithm. 
With an algorithm that produces approximate solutions, it is critical that 
the designer and user both understand what results the algorithm 
produces—in particular, whether the solution is exact or approximate. (In 
some cases, we can bound the distance between the approximation and 
the optimal solution!) 

• Efficiency — How quickly can we solve the problem?  Efficiency is the 
focus of Chapter 6. 
Going back to the first lecture, the parallel sort by first name was faster 
(in clock time) than the insertion sort. To achieve that speed, it used all of 
your brains in parallel.  (Looking at total resource utilization, it may have 
required more resources than the insertion sort.) 
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Both the bubblesort algorithm and the mergesort algorithm that we 
derived in class perform use a number of comparisons that is roughly 
equivalent to the square of the number of elements being sorted.  The 
mergesort uses about half as many comparisons as bubblesort, but both 
are still proportional to N2 for a set of N names. 
A good queue implementation (remember the homework that is due 
today) has the property that Add, Remove, and Empty all perform a 
constant amount of work each time that they are used. 

Efficiency: What’s the Big Deal? 
Computer scientists are always concerned about the efficiency of algorithms.  
Why?  Computers have finite resources—including memory, disk, screen 
resolution, and computational capacity.  (What’s the difference between a 
1GHZ Pentium and a 2.8GHZ Pentium?  Why would you want one over the 
other?  Same question about a 20GB iPod versus a 40GB iPod.)  In choosing 
between two algorithms, you might well consider their relative efficiency. 
• How does the cost of the algorithm (number of comparisons, total 

number of operations) increase as the size of the input grows? 
• How much memory does the algorithm require? And how does the 

memory requirement grow with input size? 
These considerations have practical impact. The antilock brakes in your car 
are run by software.  If the algorithm to detect a skid is too slow, you lose 
control of the car.  If the algorithm to find the cheapest flight between 
Houston and Boston has a complexity that rises too quickly with the number 
of available flights, Travelocity goes out of business. If the algorithm that 
digitizes your voice in a cellphone (or that maintains the phone’s connection 
with the network) uses too many operations, your battery life suffers. 
How efficient should an algorithm be? 
• Finding the largest number in a list of numbers, you would reasonably 

expect that we must look at each number.  An algorithm that uses roughly 
N comparisons is about as good as we can do — common sense. In fact, 
N-1 comparisons is a lower bound for this problem. 

• Finding the minimal length path from Rice to the Galleria, the 
approximate greedy algorithm will make a choice at each intersection.  
The number of comparisons (and decisions) should not be more than the 
number of intersections — in the worst case.  In the expected case, you 
hope to avoid visiting every intersection (a complete tour).   



Notice that the number of paths grows much faster than the number of 
intersections. The approximate greedy algorithm doesn’t look at every 
path; it looks at every extension to the current set of paths.  It examines 
many fewer paths than an exhaustive search would — defies common 
sense, but might be part of the approximation. 

• The dynamic planning algorithm found the minimal-length path while 
doing a simple calculation at each intersection.  Again, it takes much less 
time than the exhaustive algorithm would require.  In effect, it discards 
paths that cannot lead to a minimal-length path. 

Talking about Efficiency 
Computer Scientists talk about algorithmic efficiency using “big-Oh” 
notation.  The big-O complexity of an algorithm tells us, immediately, how 
the cost of the algorithm grows with the size of its input data.  If the number 
of operations x that the algorithm requires can be bounded from above by  

x < c · f(N) 
where f(N) is a function that depends on the size of the input set and c is a 
constant, then we say that the algorithm takes O( f(N) ) time.  For our max 
algorithm, f(N) is simply N, and the max algorithm takes O(N) time.   
When we use big-O notation, we assume that f is the smallest function that 
satisfies the inequality x < c · f(N).  For the max algorithm, it is true that N is 
an upper bound.  So is N2, N3, or even N!, but we describe the algorithm with 
the tightest upper bound that we can prove.  Thus, we refer to max as a O(N) 
algorithm — sometimes called a linear-time algorithm because the running 
time varies in direct linear proportion to the size of the input. 
Consider bubblesort.  It ran over the input list once for each element.  Each 
pass over the input list compared N-1 list elements.  It made N-1 passes over 
the list.  (N-1) · (N-1) is O(N2).  The smarter version that does half the work 
— starting the inner loop one element higher in the list on each iteration — 
does half as much work — (N-1) + (N-2) + (N-3) + … + 2.  Those numbers 
add up to (N · (N-1) / 2) -1, which is still O(N2). The smarter version makes 
half as many comparisons as the naïve version; however, that difference 
simply changes the constant c.   
Big-O notation describes the worst case behavior of the algorithm.  That 
differs from the expected case behavior or the best case behavior.  (Recall 
the greedy approximate algorithm for Rice-Galleria navigation.  With the 
best case traffic patterns, the greedy algorithm might visit many fewer 
intersections than in the worst case—and incur many fewer decisions and 



operations.  That notwithstanding, its worst case behavior is O(number of 
intersections). 
If the function, f(N), in the inequality can be expressed as a polynomial, we 
say that the algorithm has polynomial complexity. In general, problems that 
have polynomial complexities are considered tractable problems. Many 
important problems have this property — in fact, most of the problems that 
we solve with computers are tractable.  Low-order polynomial algorithms 
are considered to have efficient solutions. Multiplying two matrices — a 
common subtask in many scientific applications — takes O(N3) time.  


