
 
 
On the Board 
 Homework 4 — I need to write the solution key 
 Next homework ready Friday 
 Will talk about the final project next class 
Back to Complexity & Big-O Notation  
Last class we talked about the efficiency of algorithms and introduced the 
big-O notation (pronounced “big Oh”).  In essence, big-O notation tells us 
how the time required by an algorithm grows as a function of the size of its 
input.  In particular, we are interested in the asymptotic behavior — as N 
grows toward infinity, what function of N describes the algorithm’s running 
time. 
Remember, if the running time of an algorithm is bounded from above by  

 c · f(N) 
then we say that the algorithm is O(f(N)), where N is a measure of the size of 
the input.  Further, we expect that f(N) is the smallest function for which we 
can prove the bound running time < c · f(N). 
Consider, for example, our simple program for finding the maximum value 
in a list. 

max ← list[1] 
for i ← 2 to n 
    if (max < list[i]) 
        then max ← list[i] 

If the list has n elements, the loop iterates n-1 times.  Each operation in the 
loop’s body is simple — that is, each operation should take constant (or 
O(1) time).  It has one operation outside the loop—a simple, O(1) operation 
as well.  Thus, the running time should be O(1) + O((n-1) · 1), which 
simplifies to O(n) time.  (Remember, big-O notation is intended to provide 
an upper bound, and O(n-1) is, effectively O(n) as n grows large.  
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If we replace one of the operations in the inner loop with a more expensive 
operation, such as a mergesort — a O(n2) operation — then the complexity 
will become O(n) · O(n2) = O(n3). 
Notice that our notion of complexity depends quite heavily on the set of 
operations that we allow as elementary operations in our model of 
computation.  So far in COMP 200, we have used simple arithmetic, 
comparisons, and evaluating conditionals as O(1) operations, along with 
whatever overhead a loop requires to perform its repetitions (& its book-
keeping). This issue gets a little subtle: max of two (or three or any small 
number of arguments) can be done in O(1) time, but max of an arbitrary list 
of numbers takes O(length of list) time. Some simple operations take longer 
than is reasonable to count as O(1). For example, computing nm using the 
naïve algorithm takes O(m) time — n · n · n · … · n  (multiply n by itself m 
consecutive times). Logarithms, sin, cosine, tangent, and many other 
functions are actually computed using series approximations. It might be 
unfair to count these as O(1) operations. 
In general, when designing software, we want to use the lowest complexity 
algorithm possible. Lower complexity means faster running times, as the 
size of the input grows.  Of course, if we know how big the input will be, we 
can make comparisons based not only on the asymptotic complexity, but 
also on the size of the constants. In general, an algorithm with a smaller 
constant will run faster. 
Algorithms with low-order polynomial complexity are considered practical 
for most problems. The algorithm to paint a menu in Windows or Mac OS X 
takes time that is O(number of menu entries). It is linear in the number of 
menu entries. (Each entry is a fixed height and a bounded width, so the 
number of pixels is — roughly — a constant for each menu entry.) Many 
problems that are routinely solved have O(n2) or O(n3) complexity — for 
example, matrix-matrix multiply has O(n3) cost. 
Sometimes, linear cost is too much.  When you boot your computer, it 
usually checks the integrity of the file system.  On your machine, this might 
take as long as a minute or two. Unless major problems are found, the 
process makes a couple of linear passes over the file systems’ structure. (It 
only examines the structure; it does not look inside every byte on the disk. It 
must, however, make sure that every sector on the disk belongs to some file 
— or in the pool of unallocated sectors. Thus, the file-system check has a 
complexity that is proportional to the number of sectors in the file system. A 



sector is typically 1024 or 4096 bytes, so the number of sectors is the 
proportional to the number of bytes of space in the file system.)  
Recently, we bought a file server with two and one-half terabytes of disk 
space. Running fsck, the Linux or Mac OS X file-system checker, on two 
and one-half terabytes takes a couple of hours.  Thus, rebooting the system 
would take hours. Any computer crash would make the system unavailable 
for hours — not a good property for a server.  Imagine CNN.com or the 
OwlNet file server going down for three hours to check its disks. 
The answer, of course, is to use another method to maintain the file system’s 
integrity. In this case, the system is journalled — it records each write to the 
disk and marks them off the list when they are known to be completed.  
After a crash, the system can simply replay the writes, in order, that have not 
been certified as complete. Replaying the journal takes time proportional to 
the length of the journal.  As long as the time required for writing the file 
system has a small upper-bound — say a minute — the journaling process 
takes much less time than checking the entire file system.  The cost of 
checking is paid on each write, rather than on each crash.  The cost of 
checking becomes proportional to the amount of disk-write activity, rather 
than being proportional to the size of the file system.  Over a long period of 
time, you might pay more for the journaling.  However, at any point in time, 
the amount of time required to replay the journal is small. 


