
 
 
On the Board 
 Homework 5:  Work problem 6.3 in the book. Due 11/1/2004. 
 Final Project suggestions: posted on the web site under homework. 
Worst-case Complexity 
The Big-O notation that we have talked about the last two classes is 
generally used to describe worst-case complexity—the worst behavior that 
the algorithm can exhibit. 
Average Case versus Worst Case Complexity 
Big-O notation traditionally deals with worst case behavior. One version of 
the bubblesort algorithm (from lecture 11) was  

Swapped ← true 
while (swapped) 
swapped  ← false 
    for j ← 1 to N-1 
 if Keys[j] > Keys[j+1] 
    then  

swap  Keys[j] & Keys[j+1] 
swapped ← true 

This version of bubblesort requires O(N2) time, in the worst case.  In the best 
case, when the input is ordered, it makes a single pass over the Keys array 
and halts after O(N) comparisons.  Thus, we see a gap between its best case 
behavior and its worst case behavior.  Its average case behavior depends on 
the distribution of values in the Keys array.   
Best-case Complexity 
Just as an algorithm can have worst-case complexity and average-case 
complexity, it can also have best-case complexity.  Worst-case analysis 
establishes an upper bound on the cost of solving the problem.  Exhibiting a 
correct algorithm that solves the problem and providing an analysis of its 
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complexity bounds the problem’s worst-case behavior. Upper and lower 
bounds are a property of the problem, not of the algorithm, while average-
case behavior is inherently a property of an algorithm rather than of a 
problem. 
To establish a lower bound for a problem, we must prove that no algorithm 
can solve arbitrary instances of the problem faster than implied by the lower 
bound.  This proposition is much harder than proving an upper bound — 
while an algorithm shows an existence proof of a method that solves the 
problem within some time bound, an algorithm cannot demonstrate that no 
faster algorithm exists.  Thus, lower bounds are more difficult to establish.  
Sorting is a problem for which a firm lower bound has been established.  
The discussion on page 146 to 148 of the book establishes a lower bound of 
O(N log2 N) for sorting.  The argument is not overly complex, but the details 
exceed the threshold for presenting in class, so I leave it to you as a reading 
exercise. 
Algorithms for sorting arbitrary lists in O(N log2 N) time exist, so the upper 
and lower bounds are identical.  We call a problem with identical upper and 
lower bounds a closed problem — from the point of view of computational 
complexity, the problem has no  interesting unsolved issues.  If the upper 
and lower bounds are not equal, then the problem is an open problem — 
there is still room for developing an algorithm with lower Big-O complexity. 
When we discuss NP-Complete problems, we will see that some problems 
have huge algorithmic gaps — the distance between their upper and lower 
bounds. 
Sorting as the Poster Child for Average-case Complexity 
In fact, sorting is a closed problem.  The lower bound on sorting arbitrary 
numbers is O(N log2 N) and we have discovered algorithms that achieve this 
lower bound, such as HeapSort.  Sorting is an interesting example because 
the fastest known sorting algorithms may not have O(N log2 N) worst case 
behavior.  In fact, the classic example of an algorithm whose average-case 
behavior is better than its worst case behavior (and its average case behavior 
almost always occurs) is Tony Hoare’s algorithm QuickSort.   
 
QuickSort has O(N2) worst case behavior, but O(N log2 N) average case 
behavior, and it has an exceptionally small constant. The sorting algorithms 
with O(N log2 N) worst case behavior have larger constants than QuickSort.  



In practice, QuickSort is one of the fastest known algorithms for sorting a 
list of numbers. 

QuickSort: 
1. Pick a representative list element, the pivot 
2. Partition the list into two lists around the pivot 

• One list has values < pivot, other has values > pivot 
3. Sort the smaller lists 

• Use recursion on non-trivial cases 
4. Combine the sorted lists 

• Append smaller, pivot, and larger 
The key to making the algorithm work well is picking the pivot element.  
Ideally, you want to partition the list into equal-sized sublists. A bad 
implementation might pick the first element as pivot, or the last element as 
pivot.  (First element as pivot is a disaster for an ordered list.) A better 
implementation would pick a random element — avoiding any pattern in the 
data. An alternative is to take the average of several elements — first & last, 
for example. 
QuickSort gets its great average case-complexity when it partitions the list 
well.  It wins over MergeSort because the combine step is inexpensive — no 
comparisons, just paste the lists back together.  If it is done carefully, in a 
vector similar to the Keys vector, the combine step occurs naturally — the 
sublists are formed inside the Keys vector in a way that makes the append 
step implicit. 
If QuickSort uses an actual list element as the pivot, it wins in another way. 
At each step, it removes the pivot element from the sort.  This strategy gives 
it another slight advantage over MergeSort — at each point, it creates 
slightly smaller subproblems than MergeSort will.   

Assume that each 
value occurs only 
once in the list 


