

On the Board
 Homework 5: Work problem 6.3 in the book. Due 11/1/2004.
 Final Project suggestions: posted on the web site under homework.
Worst-case Complexity
The Big-O notation that we have talked about the last two classes is
generally used to describe worst-case complexity—the worst behavior that
the algorithm can exhibit.
Average Case versus Worst Case Complexity
Big-O notation traditionally deals with worst case behavior. One version of
the bubblesort algorithm (from lecture 11) was

Swapped ← true
while (swapped)
swapped ← false
 for j ← 1 to N-1
 if Keys[j] > Keys[j+1]
 then

swap Keys[j] & Keys[j+1]
swapped ← true

This version of bubblesort requires O(N2) time, in the worst case. In the best
case, when the input is ordered, it makes a single pass over the Keys array
and halts after O(N) comparisons. Thus, we see a gap between its best case
behavior and its worst case behavior. Its average case behavior depends on
the distribution of values in the Keys array.
Best-case Complexity
Just as an algorithm can have worst-case complexity and average-case
complexity, it can also have best-case complexity. Worst-case analysis
establishes an upper bound on the cost of solving the problem. Exhibiting a
correct algorithm that solves the problem and providing an analysis of its

COMP 200: Elements of Computer Science
Fall 2004
Lecture 21: October 18, 2004

Worst, Best, and Average Case

complexity bounds the problem’s worst-case behavior. Upper and lower
bounds are a property of the problem, not of the algorithm, while average-
case behavior is inherently a property of an algorithm rather than of a
problem.
To establish a lower bound for a problem, we must prove that no algorithm
can solve arbitrary instances of the problem faster than implied by the lower
bound. This proposition is much harder than proving an upper bound —
while an algorithm shows an existence proof of a method that solves the
problem within some time bound, an algorithm cannot demonstrate that no
faster algorithm exists. Thus, lower bounds are more difficult to establish.
Sorting is a problem for which a firm lower bound has been established.
The discussion on page 146 to 148 of the book establishes a lower bound of
O(N log2 N) for sorting. The argument is not overly complex, but the details
exceed the threshold for presenting in class, so I leave it to you as a reading
exercise.
Algorithms for sorting arbitrary lists in O(N log2 N) time exist, so the upper
and lower bounds are identical. We call a problem with identical upper and
lower bounds a closed problem — from the point of view of computational
complexity, the problem has no interesting unsolved issues. If the upper
and lower bounds are not equal, then the problem is an open problem —
there is still room for developing an algorithm with lower Big-O complexity.
When we discuss NP-Complete problems, we will see that some problems
have huge algorithmic gaps — the distance between their upper and lower
bounds.
Sorting as the Poster Child for Average-case Complexity
In fact, sorting is a closed problem. The lower bound on sorting arbitrary
numbers is O(N log2 N) and we have discovered algorithms that achieve this
lower bound, such as HeapSort. Sorting is an interesting example because
the fastest known sorting algorithms may not have O(N log2 N) worst case
behavior. In fact, the classic example of an algorithm whose average-case
behavior is better than its worst case behavior (and its average case behavior
almost always occurs) is Tony Hoare’s algorithm QuickSort.

QuickSort has O(N2) worst case behavior, but O(N log2 N) average case
behavior, and it has an exceptionally small constant. The sorting algorithms
with O(N log2 N) worst case behavior have larger constants than QuickSort.

In practice, QuickSort is one of the fastest known algorithms for sorting a
list of numbers.

QuickSort:
1. Pick a representative list element, the pivot
2. Partition the list into two lists around the pivot

• One list has values < pivot, other has values > pivot
3. Sort the smaller lists

• Use recursion on non-trivial cases
4. Combine the sorted lists

• Append smaller, pivot, and larger
The key to making the algorithm work well is picking the pivot element.
Ideally, you want to partition the list into equal-sized sublists. A bad
implementation might pick the first element as pivot, or the last element as
pivot. (First element as pivot is a disaster for an ordered list.) A better
implementation would pick a random element — avoiding any pattern in the
data. An alternative is to take the average of several elements — first & last,
for example.
QuickSort gets its great average case-complexity when it partitions the list
well. It wins over MergeSort because the combine step is inexpensive — no
comparisons, just paste the lists back together. If it is done carefully, in a
vector similar to the Keys vector, the combine step occurs naturally — the
sublists are formed inside the Keys vector in a way that makes the append
step implicit.
If QuickSort uses an actual list element as the pivot, it wins in another way.
At each step, it removes the pivot element from the sort. This strategy gives
it another slight advantage over MergeSort — at each point, it creates
slightly smaller subproblems than MergeSort will.

Assume that each
value occurs only
once in the list

