

On the Board

• Homework 5: due Monday
• Next exam: handed out next week

Algorithmic Complexity
Last lecture, we returned again to the idea that we can place lower and upper
bounds on the solution of algorithmic problems. To establish an upper
bound, we can exhibit an algorithm. Given some problem, an algorithm to
solve the problem constructively establishes an upper bound — the problem
can be solved in the given time bound. Lower bounds are established by a
proof — such proofs are usually subtle and hard to construct.
Recall that an algorithm has polynomial complexity if

running time < c · f(size of problem)
where f(N) is a polynomial in N and c is a constant. Algorithms that are
faster than polynomial take constant time — that is,

running time < c
for some constant c, independent of the size of the input set. Finding the
first element of a list takes constant, or O(1), time. Algorithms whose
running time cannot be bounded by a polynomial function are said to take
superpolynomial time. Examples of superpolynomial functions include 2N,
N!, and functions that grow even faster, such as Ackerman’s function.
Problems with Exponential Complexity
Some problems have complexities that are not polynomial. Consider the
monkey-puzzle problems. You know about these “kids” puzzles. They
consist of a picture subdivided into a square number of cards. The picture is
such that each edge between two cards has a picture crossing the boundary.
The goal is to discover an orientation for the cards that satisfies each
boundary constraint — it lines up all the pictures correctly.

COMP 200: Elements of Computer Science
Fall 2004
Lecture 23: October 24, 2004

Upper & Lower Bounds, NP vs. P

The obvious way to solve this problem is to enumerate all of the
orientations. If the puzzle has N cards, there are N! orientations. Starting at
one position, choose a card — there are 25 choices. The next position has 24
choices, followed by 23, and so on. Thus, total number of choices is

25 · 24 · 23 · 22 · 21 · … · 3 · 2 · 1
or, for N cards, N! possibilities. The obvious algorithm takes O(N!) time.
The monkey puzzle problem is genuinely hard. N! grows so rapidly that we
cannot solve it effectively for most values of N.

N N!
4 24
9 362880

16 20,922,789,888,000
25 1.551121004333098e+25

While computers keep getting faster (twice as fast every 18 to 24 months,
over the last twenty-five years), that kind of growth cannot begin to keep up
with O(N!).
Is there a better algorithm for the monkey puzzle problem?

We can improve the algorithm by having it trim the choices that are
infeasible — when the first k choices result in some misalignment of
the cards.

This improved algorithm still takes O(N!) time — recall, O is a limit, not a
tight function describing the actual behavior. In fact, any algorithm to solve
this problem requires O(N!) time in the number of cards. It is a classic
example of a problem that cannot be solved effectively — an intractable
problem. Problems with complexity bounded by a polynomial function are
considered tractable.
The notion that algorithms with polynomial complexity are tractable and
those with superpolynomial (greater than polynomial) complexity are
intractable might create a divided universe of algorithms. Pictorially, we
could represent it as:

nonpolynomial

Here, some portion of the algorithms are tractable and the rest are not.
Problems with Exponential Algorithmic Gaps
Some problems have widely separated lower and upper bounds. Problems
with a complexity gap that spans the divide in our diagram — a
superpolynomial upper bound and a polynomial lower bound — do not fit
our model. They are not provably intractable (superpolynomial lower
bound), nor are they provably tractable (known polynomial time algorithm
to solve instances of the problem).
Is this issue just an academic concern? Or are there interesting problems
with this property? It turns out that many problems have polynomial lower
bounds and superpolynomial upper bounds. A particularly important class
of problems with this property is called the NP-Complete problems. These
problems have linear time lower bounds — O(N) — and exponential upper
bounds — O(2N). The Shipbuilding Problem with multiple boat lengths,
mentioned a couple of lectures back, is one such problem.
Many important and practical problems fall in this class.

• Graph coloring — give an example
• Scheduling — many problems in scheduling are NP-Complete
• Hamiltonian paths — given a graph, does a path exist that visits each

node in the graph exactly once. (Exponential algorithm checks all the
paths.) This problem is subtle; for example, constructing a path that
includes all the edges in a graph — an Eulerian path. (This problem is
also called the Konigsburg Bridge problem, for the problem instance
that puzzled Leonhard Euler enough to get him thinking about the
general issue.)
An Eulerian path exists for any graph that is connected and has nodes
that are all of even degree (or has exactly two nodes of odd degree.
These properties can be checked in polynomial time; so we can
answer the yes-no question by checking these two conditions.

• Boolean satisfiability — given a logical formula over three Boolean
(true or false) variables, does there exist an assignment of values to
the variables that makes the formula true? [The formula consists of
individual terms, connected by the logical operators and, or, not, and

implies.] The best known algorithm requires 2N time, where N is the
number of terms (elementary assertions) in the formula. [This metric
is roughly equivalent to counting the operators.]

What makes these problems interesting? First, many real-world problems
have these issues buried inside. Classroom scheduling at a university —
assigning each class meeting to a room and an hour — can be modeled as a
scheduling problem or as a graph coloring problem. Constructing a
building, finishing a COMP 200 final project, and laying out the timetable
for a college ping-pong tournament are all scheduling problems. Path
problems, such as the Hamiltonian path problem, play an important role in
scheduling package delivery. Coloring and path problems arise in laying out
electronic components on an integrated circuit (and figuring out where to run
the microscopic wires — or traces — that connect them.
Intellectually, these problems provide one of the biggest open puzzles in
Computer Science. Because the lower and upper bounds span the boundary
between tractable and intractable, we do not know if we should give up and
approximate, or keep looking for polynomial-time algorithms. In fact, the
most interesting property (to my mind) of the set of NP-Complete problems
is that they are all intimately related. Every problem in NPC (the class of
NP-Complete problems) is polynomially related to the rest of them. That is,
there exists a polynomial time transformation on the input of the problem
that makes it an appropriate input for some other problem in NPC, and, an
inverse translation exists to take the input for that problem to our original
problem. We call this property reducibility of problems in NPC.
To prove that your problem is in NPC, you must show such two reductions
— your problem to some other problem already known to be in NPC and
from that problem back to your problem. The reductions must take
polynomial time, so that a polynomial solution to the other problem would
work as a polynomial solution to your problem — translate in, solve,
translate out. This bidirectional reducibility justifies the word “Complete” in
NP-Complete.
We also know of problems that are as hard as those in NP, but are not part of
the Complete set. To show that a problem is NP-hard, we just need to show
that it can solve some NPC problem. We can exhibit a one-way reduction to
show this property.

