
 
 
On the Board 

• Homework 5: due Monday 
• Next exam: handed out next week 

Algorithmic Complexity 
Last lecture, we returned again to the idea that we can place lower and upper 
bounds on the solution of algorithmic problems. To establish an upper 
bound, we can exhibit an algorithm. Given some problem, an algorithm to 
solve the problem constructively establishes an upper bound — the problem 
can be solved in the given time bound. Lower bounds are established by a 
proof — such proofs are usually subtle and hard to construct.   
Recall that an algorithm has polynomial complexity if  

running time < c · f(size of problem) 
where f(N) is a polynomial in N and c is a constant.  Algorithms that are 
faster than polynomial take constant time — that is,  

running time < c 
for some constant c, independent of the size of the input set.  Finding the 
first element of a list takes constant, or O(1), time.  Algorithms whose 
running time cannot be bounded by a polynomial function are said to take 
superpolynomial time.  Examples of superpolynomial functions include 2N, 
N!, and functions that grow even faster, such as Ackerman’s function. 
Problems with Exponential Complexity 
Some problems have complexities that are not polynomial.  Consider the 
monkey-puzzle problems.  You know about these “kids” puzzles.  They 
consist of a picture subdivided into a square number of cards.  The picture is 
such that each edge between two cards has a picture crossing the boundary. 
The goal is to discover an orientation for the cards that satisfies each 
boundary constraint — it lines up all the pictures correctly. 
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The obvious way to solve this problem is to enumerate all of the 
orientations.  If the puzzle has N cards, there are N! orientations.  Starting at 
one position, choose a card — there are 25 choices. The next position has 24 
choices, followed by 23, and so on. Thus, total number of choices is  

25 · 24 · 23 · 22 · 21 · … · 3 · 2 · 1 
or, for N cards, N! possibilities. The obvious algorithm takes O(N!) time.  
The monkey puzzle problem is genuinely hard.  N! grows so rapidly that we 
cannot solve it effectively for most values of N.  
 

N N! 
4 24 
9 362880 

16 20,922,789,888,000 
25 1.551121004333098e+25 

 
While computers keep getting faster (twice as fast every 18 to 24 months, 
over the last twenty-five years), that kind of growth cannot begin to keep up 
with O(N!).  
Is there a better algorithm for the monkey puzzle problem?  

We can improve the algorithm by having it trim the choices that are 
infeasible — when the first k choices result in some misalignment of 
the cards.   

This improved algorithm still takes O(N!) time — recall, O is a limit, not a 
tight function describing the actual behavior. In fact, any algorithm to solve 
this problem requires O(N!) time in the number of cards. It is a classic 
example of a problem that cannot be solved effectively — an intractable 
problem.  Problems with complexity bounded by a polynomial function are 
considered tractable.  
The notion that algorithms with polynomial complexity are tractable and 
those with superpolynomial (greater than polynomial) complexity are 
intractable might create a divided universe of algorithms.  Pictorially, we 
could represent it as: 
 
 

 

 

nonpolynomial 



 
 
Here, some portion of the algorithms are tractable and the rest are not. 
Problems with Exponential Algorithmic Gaps 
Some problems have widely separated lower and upper bounds. Problems 
with a complexity gap that spans the divide in our diagram — a 
superpolynomial upper bound and a polynomial lower bound — do not fit 
our model.  They are not provably intractable (superpolynomial lower 
bound), nor are they provably tractable (known polynomial time algorithm 
to solve instances of the problem). 
Is this issue just an academic concern? Or are there interesting problems 
with this property?  It turns out that many problems have polynomial lower 
bounds and superpolynomial upper bounds.  A particularly important class 
of problems with this property is called the NP-Complete problems. These 
problems have linear time lower bounds — O(N) — and exponential upper 
bounds — O(2N).  The Shipbuilding Problem with multiple boat lengths, 
mentioned a couple of lectures back, is one such problem. 
Many important and practical problems fall in this class. 

• Graph coloring — give an example 
• Scheduling — many problems in scheduling are NP-Complete 
• Hamiltonian paths — given a graph, does a path exist that visits each 

node in the graph exactly once.  (Exponential algorithm checks all the 
paths.)  This problem is subtle; for example, constructing a path that 
includes all the edges in a graph — an Eulerian path.  (This problem is 
also called the Konigsburg Bridge problem, for the problem instance 
that puzzled Leonhard Euler enough to get him thinking about the 
general issue.) 
An Eulerian path exists for any graph that is connected and has nodes 
that are all of even degree (or has exactly two nodes of odd degree. 
These properties can be checked in polynomial time; so we can 
answer the yes-no question by checking these two conditions. 

• Boolean satisfiability — given a logical formula over three Boolean 
(true or false) variables, does there exist an assignment of values to 
the variables that makes the formula true?  [The formula consists of 
individual terms, connected by the logical operators and, or, not, and 



implies.]  The best known algorithm requires 2N  time, where N is the 
number of terms (elementary assertions) in the formula. [This metric 
is roughly equivalent to counting the operators.] 

What makes these problems interesting?  First, many real-world problems 
have these issues buried inside.  Classroom scheduling at a university — 
assigning each class meeting to a room and an hour — can be modeled as a 
scheduling problem or as a graph coloring problem.  Constructing a 
building, finishing a COMP 200 final project, and laying out the timetable 
for a college ping-pong tournament are all scheduling problems.  Path 
problems, such as the Hamiltonian path problem, play an important role in 
scheduling package delivery. Coloring and path problems arise in laying out 
electronic components on an integrated circuit (and figuring out where to run 
the microscopic wires — or traces —  that connect them. 
Intellectually, these problems provide one of the biggest open puzzles in 
Computer Science.  Because the lower and upper bounds span the boundary 
between tractable and intractable, we do not know if we should give up and 
approximate, or keep looking for polynomial-time algorithms.  In fact, the 
most interesting property (to my mind) of the set of NP-Complete problems 
is that they are all intimately related.  Every problem in NPC (the class of 
NP-Complete problems) is polynomially related to the rest of them.  That is, 
there exists a polynomial time transformation on the input of the problem 
that makes it an appropriate input for some other problem in NPC, and, an 
inverse translation exists to take the input for that problem to our original 
problem.  We call this property reducibility of problems in NPC. 
To prove that your problem is in NPC, you must show such two reductions 
— your problem to some other problem already known to be in NPC and 
from that problem back to your problem.  The reductions must take 
polynomial time, so that a polynomial solution to the other problem would 
work as a polynomial solution to your problem — translate in, solve, 
translate out.  This bidirectional reducibility justifies the word “Complete” in 
NP-Complete.   
We also know of problems that are as hard as those in NP, but are not part of 
the Complete set.  To show that a problem is NP-hard, we just need to show 
that it can solve some NPC problem.  We can exhibit a one-way reduction to 
show this property. 


