
 
 
On the Board 

2nd Exam: out Friday, due 7 days later (2 hours, closed book, notes, 
computer) 

Review  
Since the last exam, we have looked at: 

Algorithms and data structures 
 Bubblesort & using Vectors (Keys vector) to hold a list 
 Bounded iteration & loops 
 Stacks & queues as example abstractions 
 Trees (ancestor & descendant trees) 
 General graphs  
 Structural recursion over the counting numbers 
  Sum from 1 to n 
  Product from 1 to n  (n!) 
 Algorithmic paradigms 
  Search on trees and graphs 
  Divide and conquer 
   Max, min, mergesort  
  Greedy algorithms 
   Making change for a dollar while using the  

minimal number of coins  
    Rice to the Galleria — greedy style 
    Classroom scheduling 
     Simple problem is easy in greedy form; 
     Adding constraints makes it quite hard 
    Minimum cost spanning trees (greedy works) 
   Dynamic Planning 
    Tabular form of Rice to Galleria 
 Algorithmic complexity, efficiency, and O notation 

 Worst case versus average case 
 Notion of an upper and a lower bound 
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Exam Review & Intro to Models of Computing  

In MergeSort, we saw 
that a single 
abstraction may not 
work well for all the 
parts of a problem.  
For example, 
representing the list as 
a vector with pairs 
(low,high) to represent 
subranges is natural in 
the divide step, but 
complicates the 
combine step.  
Similarly, a Scheme 
list representation 
makes the combine 
step easy, but 
complicates the divide 
step. 



 Example where lower bound is still too large  
— checking file system on terabyte-sized disk array 
— need a better idea (journalled file system) 

Computational gap between upper and lower bound 
 P vs NP 

 Biological Analogies in algorithms and computing 
  Viruses, worms, and Trojan horses… 
 
Whew, that’s enough. 
Models of Computation 
You have all grown up with computers.  They are familiar objects and all of 
you have some understanding of how they work.  For the next week or so, 
we will look at some models of computation — highly simplified models — 
that have the same power as the most advanced computers.  That is, any 
computation that can be done effectively on the most complex computers 
can also be formulated so that it runs effectively on these simple models.   
The fundamental model of computation that is most widely used dates back 
to 1936, when Alan Turing published a paper that is the cornerstone of the 
science involved in algorithms.  Turing’s paper proposed a simple 
computational model and showed that fundamental questions about what is 
computable could be posed in terms of this model.  His “Turing machine” 
elucidated a number of critical issues in the theory of computing.  It sets a 
fairly low standard for what is required to achieve “universal” computation 
— that is, anything that can be effectively computed can be computed on a 
universal machine.  It shows that some important questions cannot be 
answered — such as, will this procedure ever halt?  (More precisely, we 
cannot devise an algorithm that will examine an arbitrary algorithm or 
program and correctly report whether or not it halts.) 
Turing’s model is simple.  In fact, it requires a number of principled rules to 
simplify our thinking. 
1. Every piece of data can be represented with a finite string of symbols, 

drawn from a finite alphabet. For example, arbitrary numbers are 
represented with the digits 0 through 9, a comma, and a decimal point or 
period.  English words are represented with 52 letters (upper and lower 
case) plus the hyphen. 

2. We can treat all the storage in a computer as a single infinite capacity 
tape, where each cell on the tape can record one symbol from our 



alphabet, or a marker to signify that it is empty.  (We often use the hash 
mark, ‘#’, to signify an empty cell. 

3. Any effective algorithm can be represented in a finite program with a 
finite number of commands.  (Using looping constructs, we can run a 
small number of commands for a very long time, but the number of 
commands in the written form of the program is finite.) 

4. Any effective algorithm can be represented with an extremely simple set 
of commands — the ability to read a symbol from the tape, to replace it 
with another symbol, and to move right or left — combined with a finite 
state controller — a controller that can move from state to state based on 
the symbols that it sees on the tape.  The number of such states is finite. 

Notation 
We represent a state with a circle (a rountangle in the book) and a transition 
between two states as an arrow with some cryptic notation describing when 
it triggers (or is taken) and what actions it performs.  For example: 
 
 
 
Specifies that, when the machine is in state 1 and the tape symbol is a, the 
machine should replace a with b and move its view one position Left on the 
tape. A state can have many outgoing transitions; each transition must have a 
unique triggering label. (The letter a can appear on at most one transition 
leaving the state. This restriction ensures that the finite state controller is 
deterministic — it never has to make a choice between two possible actions.) 
Turing Machines  
This simple machine model suffices to encode any effective algorithm.  The 
book gives a finite state controller for a Turing machine that recognizes 
palindromes — strings that read the same forward and backward.  
The machine assumes that the palindrome is written on the tape and that the 
viewport on the tape starts at the left end of the string.  It uses ‘#’ to denote 
an empty cell on the tape. 
See Figure 9.4, page 224 in the book. 
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