

On the Board

2nd Exam: out Friday, due 7 days later (2 hours, closed book, notes,
computer)

Review
Since the last exam, we have looked at:

Algorithms and data structures
 Bubblesort & using Vectors (Keys vector) to hold a list
 Bounded iteration & loops
 Stacks & queues as example abstractions
 Trees (ancestor & descendant trees)
 General graphs
 Structural recursion over the counting numbers
 Sum from 1 to n
 Product from 1 to n (n!)
 Algorithmic paradigms
 Search on trees and graphs
 Divide and conquer
 Max, min, mergesort
 Greedy algorithms
 Making change for a dollar while using the

minimal number of coins
 Rice to the Galleria — greedy style
 Classroom scheduling
 Simple problem is easy in greedy form;
 Adding constraints makes it quite hard
 Minimum cost spanning trees (greedy works)
 Dynamic Planning
 Tabular form of Rice to Galleria
 Algorithmic complexity, efficiency, and O notation

 Worst case versus average case
 Notion of an upper and a lower bound

COMP 200: Elements of Computer Science
Fall 2004
Lecture 27: November 3, 2004

Exam Review & Intro to Models of Computing

In MergeSort, we saw
that a single
abstraction may not
work well for all the
parts of a problem.
For example,
representing the list as
a vector with pairs
(low,high) to represent
subranges is natural in
the divide step, but
complicates the
combine step.
Similarly, a Scheme
list representation
makes the combine
step easy, but
complicates the divide
step.

 Example where lower bound is still too large
— checking file system on terabyte-sized disk array
— need a better idea (journalled file system)

Computational gap between upper and lower bound
 P vs NP

 Biological Analogies in algorithms and computing
 Viruses, worms, and Trojan horses…

Whew, that’s enough.
Models of Computation
You have all grown up with computers. They are familiar objects and all of
you have some understanding of how they work. For the next week or so,
we will look at some models of computation — highly simplified models —
that have the same power as the most advanced computers. That is, any
computation that can be done effectively on the most complex computers
can also be formulated so that it runs effectively on these simple models.
The fundamental model of computation that is most widely used dates back
to 1936, when Alan Turing published a paper that is the cornerstone of the
science involved in algorithms. Turing’s paper proposed a simple
computational model and showed that fundamental questions about what is
computable could be posed in terms of this model. His “Turing machine”
elucidated a number of critical issues in the theory of computing. It sets a
fairly low standard for what is required to achieve “universal” computation
— that is, anything that can be effectively computed can be computed on a
universal machine. It shows that some important questions cannot be
answered — such as, will this procedure ever halt? (More precisely, we
cannot devise an algorithm that will examine an arbitrary algorithm or
program and correctly report whether or not it halts.)
Turing’s model is simple. In fact, it requires a number of principled rules to
simplify our thinking.
1. Every piece of data can be represented with a finite string of symbols,

drawn from a finite alphabet. For example, arbitrary numbers are
represented with the digits 0 through 9, a comma, and a decimal point or
period. English words are represented with 52 letters (upper and lower
case) plus the hyphen.

2. We can treat all the storage in a computer as a single infinite capacity
tape, where each cell on the tape can record one symbol from our

alphabet, or a marker to signify that it is empty. (We often use the hash
mark, ‘#’, to signify an empty cell.

3. Any effective algorithm can be represented in a finite program with a
finite number of commands. (Using looping constructs, we can run a
small number of commands for a very long time, but the number of
commands in the written form of the program is finite.)

4. Any effective algorithm can be represented with an extremely simple set
of commands — the ability to read a symbol from the tape, to replace it
with another symbol, and to move right or left — combined with a finite
state controller — a controller that can move from state to state based on
the symbols that it sees on the tape. The number of such states is finite.

Notation
We represent a state with a circle (a rountangle in the book) and a transition
between two states as an arrow with some cryptic notation describing when
it triggers (or is taken) and what actions it performs. For example:

Specifies that, when the machine is in state 1 and the tape symbol is a, the
machine should replace a with b and move its view one position Left on the
tape. A state can have many outgoing transitions; each transition must have a
unique triggering label. (The letter a can appear on at most one transition
leaving the state. This restriction ensures that the finite state controller is
deterministic — it never has to make a choice between two possible actions.)
Turing Machines
This simple machine model suffices to encode any effective algorithm. The
book gives a finite state controller for a Turing machine that recognizes
palindromes — strings that read the same forward and backward.
The machine assumes that the palindrome is written on the tape and that the
viewport on the tape starts at the left end of the string. It uses ‘#’ to denote
an empty cell on the tape.
See Figure 9.4, page 224 in the book.

a/b, L
2 1

