
 
 
On the Board 
 Second Exam: available today  (spares outside DH 2065) 
Final Project Discussion 
1. Five to ten page written report; graded on technical content as well as 

writing (grammar, persuasiveness) 
2. Ten to 15 minute oral report in class. 
Back to Turing Machines 
Last class, we talked about Turing machines as a simplification of the model 
that we use to think about computing.  
1. All input data can be represented with finite strings of symbols drawn 

from some finite alphabet. 
2. All storage that the computer needs can be represented as a single tape of 

infinite length with only relative addressing (the ability to move left or 
right from the cell currently being read, as opposed to integer names for 
every cell — so called, random-access memory). 

3. An effective algorithm can be represented with a finite-length string of 
symbols (and these can be translated into a finite state controller, such as 
the one for palindrome recognition in Figure 9.24 of the book). 

4. The set of commands needed to implement algorithms over symbols is 
extremely simple — the ability to read and write single symbols from the 
tape, to move right or left on the tape, and to move from state to state in 
the controller based on the symbol read from the tape. 

Despite these simplifications, we showed that a Turing machine could 
perform a moderately difficult task — recognizing palindromes.  
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Programming a TM 
Several Turing-machine programming tricks come in handy if we try to 
think about programming more complex actions. 

• The controller can always find scratch space out on the tape.  It just 
looks for an area that has all blanks and is big enough.  Since the tape 
is infinite, such a space must exist. 

• The controller can leave behind special characters on the tape to mark 
positions.  The alphabet is finite but need not be small. 

• The controller can copy the input data to another location on the tape 
if it needs to modify or destroy it.  This lets us create a Turing 
machine that leaves the input symbols intact. 

• Multi-dimensional data-structures (arrays, for example) can be 
linearized for storage on a linear tape. 

Universal Turing Machines 
Turing claimed that any effective algorithm can be implemented as a TM —
that is, a finite state controller can be designed that causes the Turing 
machine to implement the algorithm.  (Alonzo Church made a similar claim 
for his lambda calculus.  The lambda calculus is actually the basis for the 
Scheme programming language that we used earlier in the course. The 
equivalence of the lambda calculus and TMs has led people to refer to the 
claim of generality as the Church-Turing thesis.  It is a thesis, rather than a 
theorem, because it contains some squishy terms — such as “effective”.) 
How can a Turing machine be universal? (implement any  effective 
algorithm?) If we can represent the finite state control of a Turing machine 
in a symbolic form, then we can built a controller that interprets such a 
description and performs the actions that the described machine would take.   

• represent transitions in the finite state control as a tuple: 
<source, destination, trigger symbol, write symbol, tape motion> 
and require that the interpreter use finite storage (leaving infinite 
storage for the interpreted machine). 

• tape marker at the start and end of the stored program, say “!” 
• read an input symbol, back up to the start of the program, find the 

current state transitions, check against the input program; then write 
the tape symbol and take the transition. 



Actually, the claim that Turing machines are universal is fairly robust. We 
can modify the model in many ways without losing its power. 

• One-way infinite tape — we can fold the tape in half, using even 
numbered cells for one direction and odd-numbered cells for the 
other.  Bottom line — infinity is big enough. 

• Machine cannot modify its inputs — can copy data elsewhere on the 
tape. 

• Machine must clean up its tape — only input and output, separated by 
some designated character. 

• Multiple tape machines have the same power as single tape machines. 
(Again, infinity is big enough.  Can encode k tapes onto a single tape 
by alternating them.  Stacking them one after another doesn’t work as 
well because expanding one tape is expensive.) 

• Two-dimensional tapes have the same property — we can linearize 
them into a single tape. 

Turing Machines and the P versus NP question: 
• Deterministic finite state control (at most one transition per alphabet 

symbol per state) limits the set of algorithms solvable in polynomial 
time on a TM to PTIME — the set P in the discussion of P and NP. 

• Nondeterministic finite state control lets the TM solve NP-complete 
problems in polynomial time.  Unfortunately, the nondeterministic 
controller is not sequential — it makes oracular guesses — so it 
cannot be considered sequential.  The other model for an NDTM uses 
a construction to simulate the nondeterminism on a deterministic 
controller.  The construction can require exponential growth in the 
controller size (and, perhaps in the running time on a TM).  Thus, it is 
an open question as to whether nondeterministic control and 
deterministic control are equivalent.  After all, does P = NP? 

Numbering the TMs 
Turing machines are important tools in such activities as proving lower 
bounds on an algorithmic problem’s complexity, in reasoning about what 
can be computed effectively (in polynomial time or space) and in reasoning 
about what can be computed at all. 
One of the simplifications that Turing made was to recognize that a string of 
symbols can adequately represent any kind of input data.  The converse of 



this observation is that any string of symbols can be viewed as a number in 
the base that corresponds to the cardinality (set size) of the input alphabet. 
Just as the digits 901 represent a number (we assume base ten) and the 
characters FF represent a base 16 (hexadecimal number), so the contents of a 
TM input tape can be viewed as representing a number.   
Given some encoding of TMs for input to some universal TM, it must be 
true that all the TMs that can serve as input form unique numbers; they are 
countable and we can define an order on them. 
This observation leads to one of the most profound observations in the 
theory of computability — we cannot create a TM that takes as input a TM 
and its input and returns YES if the input TM halts on that input and returns 
NO if the input TM does not halt on that input.  This problem, called the 
halting problem, is one of a handful of classic examples of a problem whose 
solution cannot be computed.   (Proof by diagonalization) 


