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An Example

Sum the series

n + n-1 + n-2 + … + 1

In Scheme, we might write

(define (summation n)

   (cond  [(= n 0) 0]

              [else  (+ n  (summation (sub1 n)))]))

(summation 3)

How do we really go from (summation 3) to an answer?
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The Standard Answer

We explain DrScheme’s behavior by saying that it

performs a series of rewriting steps

 (summation 3)

"  (cond  [(= 3 0) 0]

                 [else  (+ 3  (summation (sub1 3)))])

" (+ 3  (summation 2))

" (+ 3 (cond  [(= 2 0) 0]

                       [else  (+ 2  (summation (sub1 2)))]))

" (+ 3 (+ 2  (summation 1)))

" (+ 3 (+ 2  (cond  [(= 1 0) 0]

                       [else  (+ 1  (summation (sub1 1)))])))
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… a long series of rewriting steps …

" (+ 3 (+ 2 (+ 1  (summation 0)))))
" (+ 3 (+ 2 (+ 1   (cond  [(= 0 0) 0]
                                        [else  (+ 0  (summation (sub1 0)))]))))

" (+ 3 (+ 2 (+ 1   0)))

" (+ 3 (+ 2 1))

" (+ 3  3 )

" 6

It eventually produces the answer:  6

Is that how it really works?  Probably not

Does it matter?  Not unless we can tell the difference

The Standard Answer                    (continued)
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The Big Lie(s)

Programming languages deal with abstractions

• Infinite precision numbers

• Symbols

• Lists, structs, vectors, trees

• Functions, programs, name spaces               (local )

Computers deal with a limited repertoire of simpler ideas

• Finite integers, floating-point numbers            (approximate Rn )

• Memory locations

• Small set of fundamental operations                (add, sub, mult, div, …)

Language implementation must make good on the lies!
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What is DrScheme?

Imagine a contract for DrScheme:

DrScheme: program x inputs ! results

DrScheme is a program that manipulates programs

In particular, it

• Creates and maintains the Scheme Environment

> Functions, objects, definitions,

> Abstractions like “local” and “define-struct”

• Checks to see that programs are well formed

• Executes programs

DrScheme implements the programming language Scheme
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Implementing Programming Languages

Two principal ways to “implement” a language

• Interpreter: program x inputs ! results

• Compiler: program ! program

Interpreter

program

data

results

data

Compiler
program resultsMachine

Code

Can be run

many times

Interpreter is just a

program in some language

DrScheme contains about

60,000 lines of C code

Compiler is just a

program, ! 500,000 loc
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Inside an Interpreter

• Represent the program in some internal form

(+ 3 4 5) " (cons + (cons 3 (cons 4 (cons 5 nil))))

• Traverse that data structure and produce answers

(+ 3 4 5) " 12

Along the way

• Manages the name space

> Variables, arguments/parameters, symbols, free variables

• Manages storage (the computer’s memory)

• Manages communication with outside world

> Programmer or user, external files, other programs …

How many names are

there in Scheme?

How many lists?
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The Conceptual View

DrScheme

(define (summation n)

  (cond

      [(= n 0) 0]

      [else (+ n

                  (summation (sub1 n)))]))

> (summation 3)

  6

summation

3

6

foldr

map

+

*

-
/

Scheme Environment

Rewriting

Engine

1. You enter your code in the definitions window

2. You enter an expression in the interactions window

3. DrScheme rewrites until it has a solution

Behind the scene
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What Really Happens?

(define (summation  n)

  (cond

      [(= n 0) 0]

      [else (+ n

> (summation 3)

  6

(defi
n

e  (D
rS

ch
em

e)

  ( …
  ))

• DrScheme is a program that executes,

   or interprets, Scheme programs.

• You know enough to write a simple

   version of this program!

The Scheme Environment only

exists in the interpreter’s memory

and the programmer’s imagination

Digital Computer Behind the scene, the computer

runs the program “DrScheme”
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What does this “computer” look like?

Digital Computer

Finite State 

Control

...

Our “Universal” model of computation

was a Turing machine

• Finite state control

• Infinite storage tape

Is this how a “digital computer” works?
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Functional

unit

...

PC

Finite State 

Control

What does this “computer” look like?

Digital Computer

Programs

Data

Reminds me of a Turing machine

• Finite state control

• Large (finite) storage

• We added a “functional unit”

Supports higher-level operations,

such as add, sub, mult, div, branch

The TM is closer than you might think
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What commands does the “computer” run?

Computer’s instruction set

• Low-level, imperative commands

> Arithmetic operations

> Control operations

> Location-oriented programming

• We call these operations “assembly-language”

     or “machine code”          (you would find them in a Windows .exe)

Arithmetic Operations

add   x, y => z

sub   x, y => z

mult x, y => z

div   x, y => z

Control  Operations

branch  x -> y

 jump -> y

 call -> y

 return

• No cons, first, define, …

• All those functions can be

implemented with these ops

• Church/Turing thesis says

these ops are enough …
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One final complication

Memory is slower than functional or control units

• Fast, named, data memory near the processor — “registers”

• Load & store ops move data between memory & registers

• Other ops now refer to registers for data      (args & results)

Functional

unit

...

PC

Finite State 

Control

...
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Programming with Machine Operations

(define (summation n)

   (cond  [(= n 0) 0]

              [else  (+ n

          (summation (sub1 n)))]))

100:  loadi  1        " r1

101:  load    r1       " r2

102:  copy   r1       " r3

103:  add     r3 r2   " r3

104:  sub      r2 r1   " r2

105:  eq?      r2 r1  " r10

106:  branch r10    ! 108

107:  jump            ! 103

108:  loadi   2       " r11

109:  store    r2      " r11

110:  stop

This might become, after

storage assignment & translation

1:  n

2:  result

Assembly programming & the design of

assemblers are taught in COMP/ELEC 320
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Understanding How a Computer Works

One valuable tool is simulation

• Write a program that has the

same behavior

• Models behavior of system

• Gives insight into its workings

Simulation is used in many ways

• Design of new systems

• Conduct experiments that are expensive or dangerous

• Train pilots in cases where loss is expensive

Simulating a computer shows us a lot about how it works

Writing a simulator for a simple

computer is a common exercise for

2nd or 3rd year CS students
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Computers Keep Getting Faster

Processor power versus time, 1980 to 2000

1982 1983.5 1985 1986.5 1988 1989.5 1991 1992.5 1994 1995.5 1997 1998.5 2000

Plot of

Moore’s Law

1980-2000

How did this

happen?
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They Are Running Faster

The clock frequency of processors has risen

• 1983: 10 MHZ 68020 provided about 1 MIP

• 2004: 1 GHZ PowerPC provides 1000 MIPs + 4 GFLOP

• 2004: Pentiums in 3 to 4 GHZ range

High-end chips are heading toward 2 processors per chip

All this power has a downside, however

• Power consumption # frequency2

• Heat # power

> Hence, Intel’s announcement of multiple cores rather than higher

frequencies for the next generation of processors … it’s about heat!

• Computation needs operands, needs memory

" 10 cycles/operation

" 1 cycle/operation

Finite-state control

has gotten better!
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They Are Also Running More Operations

Programs contain parallelism

• Operations that can execute at the same time

• Can occur at the fine-grained level or on a larger scale

Computers can exploit parallelism

• Increase operations per cycle

• Use more hardware rather than faster hardware

• Many options

> Single chip processor with many functional units

> Custom-built machine with many individual nodes (computers)

> Networks of workstations and/or PCs
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Single Chip, Many Functional Units

Functional

unit

r0 r1 r2 r63... ...

PCControl Unit

Functional

unit

Functional

unit

Functional

unit

...

Data Cache

Program Cache

• • •

This takes advantage of instruction-level parallelism

Cache memories

read & write a

big, slow global

memory
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Many Processors, Dedicated Interconnect

Multiprocessor Computer
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Network of Workstations

De-facto parallel

machines exist in

most modern offices

and many homes !


