
From Programs to Executions:

An Odyssey in Language Translation

(with examples in Scheme)

Keith D. Cooper

Rice University

Houston, Texas

Fall 2004

Copyright 2004, Keith D. Cooper

Reproduction allowed for non-profit
educational purposes.

Programs!Executions

Fall 2004
2

An Example

Sum the series

n + n-1 + n-2 + … + 1

In Scheme, we might write

(define (summation n)

 (cond [(= n 0) 0]

 [else (+ n (summation (sub1 n)))]))

(summation 3)

How do we really go from (summation 3) to an answer?

Programs!Executions

Fall 2004
3

The Standard Answer

We explain DrScheme’s behavior by saying that it

performs a series of rewriting steps

 (summation 3)

" (cond [(= 3 0) 0]

 [else (+ 3 (summation (sub1 3)))])

" (+ 3 (summation 2))

" (+ 3 (cond [(= 2 0) 0]

 [else (+ 2 (summation (sub1 2)))]))

" (+ 3 (+ 2 (summation 1)))

" (+ 3 (+ 2 (cond [(= 1 0) 0]

 [else (+ 1 (summation (sub1 1)))])))

Programs!Executions

Fall 2004
4

… a long series of rewriting steps …

" (+ 3 (+ 2 (+ 1 (summation 0)))))
" (+ 3 (+ 2 (+ 1 (cond [(= 0 0) 0]
 [else (+ 0 (summation (sub1 0)))]))))

" (+ 3 (+ 2 (+ 1 0)))

" (+ 3 (+ 2 1))

" (+ 3 3)

" 6

It eventually produces the answer: 6

Is that how it really works? Probably not

Does it matter? Not unless we can tell the difference

The Standard Answer (continued)

Programs!Executions

Fall 2004
5

The Big Lie(s)

Programming languages deal with abstractions

• Infinite precision numbers

• Symbols

• Lists, structs, vectors, trees

• Functions, programs, name spaces (local)

Computers deal with a limited repertoire of simpler ideas

• Finite integers, floating-point numbers (approximate Rn)

• Memory locations

• Small set of fundamental operations (add, sub, mult, div, …)

Language implementation must make good on the lies!

Programs!Executions

Fall 2004
6

What is DrScheme?

Imagine a contract for DrScheme:

DrScheme: program x inputs ! results

DrScheme is a program that manipulates programs

In particular, it

• Creates and maintains the Scheme Environment

> Functions, objects, definitions,

> Abstractions like “local” and “define-struct”

• Checks to see that programs are well formed

• Executes programs

DrScheme implements the programming language Scheme

Programs!Executions

Fall 2004
7

Implementing Programming Languages

Two principal ways to “implement” a language

• Interpreter: program x inputs ! results

• Compiler: program ! program

Interpreter

program

data

results

data

Compiler
program resultsMachine

Code

Can be run

many times

Interpreter is just a

program in some language

DrScheme contains about

60,000 lines of C code

Compiler is just a

program, ! 500,000 loc

Programs!Executions

Fall 2004
8

Inside an Interpreter

• Represent the program in some internal form

(+ 3 4 5) " (cons + (cons 3 (cons 4 (cons 5 nil))))

• Traverse that data structure and produce answers

(+ 3 4 5) " 12

Along the way

• Manages the name space

> Variables, arguments/parameters, symbols, free variables

• Manages storage (the computer’s memory)

• Manages communication with outside world

> Programmer or user, external files, other programs …

How many names are

there in Scheme?

How many lists?

Programs!Executions

Fall 2004
9

The Conceptual View

DrScheme

(define (summation n)

 (cond

 [(= n 0) 0]

 [else (+ n

 (summation (sub1 n)))]))

> (summation 3)

 6

summation

3

6

foldr

map

+

*

-
/

Scheme Environment

Rewriting

Engine

1. You enter your code in the definitions window

2. You enter an expression in the interactions window

3. DrScheme rewrites until it has a solution

Behind the scene

Programs!Executions

Fall 2004
10

What Really Happens?

(define (summation n)

 (cond

 [(= n 0) 0]

 [else (+ n

> (summation 3)

 6

(defi
n

e (D
rS

ch
em

e)

 (…
))

• DrScheme is a program that executes,

 or interprets, Scheme programs.

• You know enough to write a simple

 version of this program!

The Scheme Environment only

exists in the interpreter’s memory

and the programmer’s imagination

Digital Computer Behind the scene, the computer

runs the program “DrScheme”

Programs!Executions

Fall 2004
11

What does this “computer” look like?

Digital Computer

Finite State

Control

...

Our “Universal” model of computation

was a Turing machine

• Finite state control

• Infinite storage tape

Is this how a “digital computer” works?

Programs!Executions

Fall 2004
12

Functional

unit

...

PC

Finite State

Control

What does this “computer” look like?

Digital Computer

Programs

Data

Reminds me of a Turing machine

• Finite state control

• Large (finite) storage

• We added a “functional unit”

Supports higher-level operations,

such as add, sub, mult, div, branch

The TM is closer than you might think

Programs!Executions

Fall 2004
13

What commands does the “computer” run?

Computer’s instruction set

• Low-level, imperative commands

> Arithmetic operations

> Control operations

> Location-oriented programming

• We call these operations “assembly-language”

 or “machine code” (you would find them in a Windows .exe)

Arithmetic Operations

add x, y => z

sub x, y => z

mult x, y => z

div x, y => z

Control Operations

branch x -> y

 jump -> y

 call -> y

 return

• No cons, first, define, …

• All those functions can be

implemented with these ops

• Church/Turing thesis says

these ops are enough …

Programs!Executions

Fall 2004
14

One final complication

Memory is slower than functional or control units

• Fast, named, data memory near the processor — “registers”

• Load & store ops move data between memory & registers

• Other ops now refer to registers for data (args & results)

Functional

unit

...

PC

Finite State

Control

...

Programs!Executions

Fall 2004
15

Programming with Machine Operations

(define (summation n)

 (cond [(= n 0) 0]

 [else (+ n

 (summation (sub1 n)))]))

100: loadi 1 " r1

101: load r1 " r2

102: copy r1 " r3

103: add r3 r2 " r3

104: sub r2 r1 " r2

105: eq? r2 r1 " r10

106: branch r10 ! 108

107: jump ! 103

108: loadi 2 " r11

109: store r2 " r11

110: stop

This might become, after

storage assignment & translation

1: n

2: result

Assembly programming & the design of

assemblers are taught in COMP/ELEC 320

Programs!Executions

Fall 2004
16

Understanding How a Computer Works

One valuable tool is simulation

• Write a program that has the

same behavior

• Models behavior of system

• Gives insight into its workings

Simulation is used in many ways

• Design of new systems

• Conduct experiments that are expensive or dangerous

• Train pilots in cases where loss is expensive

Simulating a computer shows us a lot about how it works

Writing a simulator for a simple

computer is a common exercise for

2nd or 3rd year CS students

Programs!Executions

Fall 2004
17

Computers Keep Getting Faster

Processor power versus time, 1980 to 2000

1982 1983.5 1985 1986.5 1988 1989.5 1991 1992.5 1994 1995.5 1997 1998.5 2000

Plot of

Moore’s Law

1980-2000

How did this

happen?

Programs!Executions

Fall 2004
18

They Are Running Faster

The clock frequency of processors has risen

• 1983: 10 MHZ 68020 provided about 1 MIP

• 2004: 1 GHZ PowerPC provides 1000 MIPs + 4 GFLOP

• 2004: Pentiums in 3 to 4 GHZ range

High-end chips are heading toward 2 processors per chip

All this power has a downside, however

• Power consumption # frequency2

• Heat # power

> Hence, Intel’s announcement of multiple cores rather than higher

frequencies for the next generation of processors … it’s about heat!

• Computation needs operands, needs memory

" 10 cycles/operation

" 1 cycle/operation

Finite-state control

has gotten better!

Programs!Executions

Fall 2004
19

They Are Also Running More Operations

Programs contain parallelism

• Operations that can execute at the same time

• Can occur at the fine-grained level or on a larger scale

Computers can exploit parallelism

• Increase operations per cycle

• Use more hardware rather than faster hardware

• Many options

> Single chip processor with many functional units

> Custom-built machine with many individual nodes (computers)

> Networks of workstations and/or PCs

Programs!Executions

Fall 2004
20

Single Chip, Many Functional Units

Functional

unit

r0 r1 r2 r63... ...

PCControl Unit

Functional

unit

Functional

unit

Functional

unit

...

Data Cache

Program Cache

• • •

This takes advantage of instruction-level parallelism

Cache memories

read & write a

big, slow global

memory

Programs!Executions

Fall 2004
21

Many Processors, Dedicated Interconnect

Multiprocessor Computer

Programs!Executions

Fall 2004
22

Network of Workstations

De-facto parallel

machines exist in

most modern offices

and many homes !

