From Programs to Executions:
An Odyssey in Language Translation

(with examples in Scheme)

Keith D. Cooper

Rice University
Houston, Texas

N Fall 2004

RIC Copyright 2004, Keith D. Cooper

Reproduction allowed for non-profit
educational purposes.

An E l P
n example \

Sum the series
n+n-1+n-2+. +1

In Scheme, we might write

(define (summation n)
(cond [(=n0)0]
[else (+n (summation (subl n)))]))

(summation 3)

How do we really go from (summation 3) to an answer?

Programs—E xecutions 2
Fall 2004

The Standard Answer \\

We explain DrScheme's behavior by saying that it
performs a series of rewriting steps

(summation 3)
= (cond [(= 30)0]
[else (+ 3 (summation (subl 3)))])

= (+ 3 (summation 2))
= (+ 3 (cond [(=20)0]

[else (+2 (summation (subl 2)))]))
= (+ 3 (+ 2 (summation 1)))
= (+3(+2 (cond [(=10)0]

[else (+1 (summation (subl 1)))1)))

Programs—Executions 3

Fall 2004

The Standard Answer (continued) | §
@

.. a long series of rewriting steps ...

= (+3 (+ 2 (+1 (summation 0)))))
=(+3(+2(+1 (cond [(00)0]
[else (+ O (summation (subl 0)))]))))
=H+3(H+=2F1 0))
=(+3+21)
=(+3 3)
=6

It eventually produces the answer: 6

Is that how it really works? Probably not
Does it matter? Not unless we can tell the difference

Programs—Executions 4
Fall 2004

The Big Lie(s) \‘§

Programming languages deal with abstractions
Infinite precision numbers
Symbols
Lists, structs, vectors, trees

Functions, programs, hame spaces (focal)

Computers deal with a limited repertoire of simpler ideas

Finite integers, floating-point numbers (approximate R")
Memory locations

Small set of fundamental operations (add, sub, mult, div, ...)

Language implementation must make good on the lies!

Programs—Executions 5
Fall 2004
What is DrScheme? \‘§

Imagine a contract for DrScheme:
DrScheme: program x inputs — results
DrScheme is a program that manipulates programs

In particular, it

* Creates and maintains the Scheme Environment
> Functions, objects, definitions,
> Abstractions like “local” and "define-struct”

* Checks to see that programs are well formed

+ Executes programs

DrScheme implements the programming language Scheme

Programs—Executions 6
Fall 2004

. | g
Implementing Programming Languages k§

Two principal ways to “implement” a language

* Interpreter: program x inputs — results

/ Interpreter is just a

program in some language

program
> results
data Interpreter |————
V¥

DrScheme contains about
60,000 lines of C code

* Compiler: program — program

program Machine results
_—

Compiler — >\ Code /T
W, "o
Compiler is just a — Can be run
program,>500,000 loc data many times
Programs—Executions 7
Fall 2004
£

Inside an Interpreter

A

* Represent the program in some internal form
(+ 34 5) = (cons + (cons 3 (cons 4 (cons 5 nil))))

* Traverse that data structure and produce answers
(+345) =12

How many nhames are
there in Scheme?

Along the way

* Manages the name As/p;y— How many lists?

> Variables, arguments7parameters, symbols, free variables
* Manages storage (the computer’s memory)
* Manages communication with outside world

> Programmer or user, external files, other programs ...

Programs—Executions 8
Fall 2004

The Conceptual View

(define (summation n)

(cond
=00)0] Rewriting
[else (+ n Engine
(summation (subl n)))])) T

> (summation 3)
6

Behind the scene

DrScheme
Scheme Environment

1. You enter your code in the definitions window
2. You enter an expression in the interactions window

3. DrScheme rewrites until it has a solution

Programs—Executions 9
Fall 2004

What Really Happens?

Behind the scene, the computer
runs the program "DrScheme”

Digital Computer

Y

— * DrScheme is a program that executes,

or interprets, Scheme programs.
* You know enough to write a simple

(define (summation n)
(cond

[(=n0)0]

[else (+n

«

(ouwdYdSIT) duyap)

> (summation 3)

6 version of this program!

The Scheme Environment only
exists in the interpreter's memory
and the programmer’s imagination

Programs—Executions 10
Fall 2004

What does this "computer” look like?

Digital Computer

<4
A
Finite State Our "Universal” model of computation
Control was a Turing machine

Programs—Executions
Fall 2004

* Finite state control
* Infinite storage tape

Is this how a "digital computer” works?

What does this "computer” look like?

Digital Computer

Data
N

11

The TM is closer than you might think

Functional [€

Programs—Executions
Fall 2004

* Finite state control

unit A
-— : . TN
ry Supports higher-level operations, Priograms
such as add, sub, mult, div, branch :
[MNe
I_I‘
Finite State . . .
Control'3?.'.‘.“..'.’.‘9:‘.‘...'.‘?.‘.’r.."..f.ﬂ.T.‘i’.‘.'..’.‘Q..’.‘?PCh'"e

* Large (finite) storage
* We added a "functional unit”

12

T
What commands does the “computer” run? Q\%

Computer's instruction set E

* Low-level, imperative commands

T

> [TTTTTTTTT] IIIII‘IIIIIII

=
L

<
<

> Arithmetic operations

> Control operations
> Location-oriented programming

* We call these operations "assembly-language”

or "machine code" (you would find them in a Windows .exe)
Arithmetic Operations Control Operations * No cons, first, define, ...

add x,y=>z br?HCh X->y * All those functions can be

sub X,y =>z jump ->y implemented with these ops

multx, y =>z call ->y))

div x,y=>z returm * Church/Turing thesis says

Programs—Executions
Fall 2004

One final complication

these ops are enough ...

13

)

Memory is slower than functional or control units

* Fast, named, data memory near the processor — “registers"

* Load & store ops move data between memory & registers

* Other ops now refer to registers for data (args & results)

Functional

unit

A

A

M
L

| Finite State

Programs—Executions
Fall 2004

CONTPOl o ool

14

Programming with Machine Operations

(define (summation n)
(cond [(=n0)0]

)

[else (+n 100: loadi 1 =T,
(summation (subl n)))])) 101: load r, =T,
102: copy r, =T,
l 103: add 1;r, =,
This might become, after ‘ 104: sub 1,1, =,
storage assignment & translation 105: eq? 1,1 =1
106: branchr,, — 108
l 107: jump — 103
108: loadi 2 =1,
I: n 109: store 1, =71,
2: result 110: stop
Assembly programming & the design of
assemblers are taught in CoMP/ELEC 320
Programs—Executions 15
Fall 2004
. bR
Understanding How a Computer Works &
SN
One valuable tool is simulation E«IIIIIIIIIIII |||||"—|||||||

* Worite a program that has the
same behavior

T

=
L

<
<

* Models behavior of system

* Gives insight into its workings

Weriting a simulator for a simple

computer is a common exercise for

Simulation is used in many ways
* Design of new systems

* Conduct experiments that are expensive or dangerous

* Train pilots in cases where loss is expensive

Simulating a computer shows us a lot about how it works

Programs—Executions
Fall 2004

2nd or 3rd year CS students

16

TR
Computers Keep Getting Faster §§

/ Plot of

Moore’s Law
/ 1980-2000

/ How did this
happen?

1982 1983.5 1985 1986.5 1988 1989.5 1991 1992.5 1994 1995.5 1997 1998.5 2000

Processor power versus time, 1980 to 2000

Programs—Executions 17
Fall 2004
. L&
They Are Running Faster N
&

The clock frequency of processors has risen

1983: 10 MHz 68020 provided about 1 Mzp4 = 10 cycles/operation |

* 2004: 1 GHz PowerPC provides 1000 Mrps + 4 GrLor

2004: Pentiums in 3 to 4 GHz range — 1 cycle/operation

High-end chips are heading toward 2 processors per chip

All this power has a downside, however Finite-state control
has gotten better!

* Power consumption « frequency?

* Heat « power

> Hence, Intel's announcement of multiple cores rather than higher
frequencies for the next generation of processors ... it's about heat!

Computation needs operands, needs memory

Programs—Executions 18
Fall 2004

v B
They Are Also Running More Operations %

Programs contain parallelism
Operations that can execute at the same time
* Can occur at the fine-grained level or on a larger scale

Computers can exploit parallelism

* Increase operations per cycle

* Use more hardware rather than faster hardware

* Many options
> Single chip processor with many functional units
> Custom-built machine with many individual nodes (computers)
> Networks of workstations and/or PCs

Programs—Executions 19
Fall 2004
. . . . \\ \}
Single Chip, Many Functional Units ‘“Q
N
cPry (1| 1y Tes ... Data Cache
: 4 . A 44 L S
v v v v
Functional | | Functional Y Functional - Functional cee
unit unit unit unit
Cache memories
* ? f read & write a
big, slow global
............. o

. Program Cache

This takes advantage of instruction-level parallelism

Programs—Executions 20
Fall 2004

Many Processors, Dedicated Interconnect /"’§

i
i

|
l

|
l

i
i

|
l

il
i
i

TH

i
i

k
k
k
k
k

Multiprocessor Computer

Programs—Executions 21
Fall 2004
. ‘ 9 \\
Network of Workstations /§
&)

De-facto parallel
machines exist in

« E% % most modern offices
]

and many homes!

Programs—Executions 22
Fall 2004

