
 
 
On the Board 
 Final Projects — get working … 
Requirements for Digital Signatures & Digital Commerce 
To enable secure and trustworthy digital communication, we need an 
encryption system that has several key properties: 
• Encrypting and decrypting messages (given the key) should be relatively 

inexpensive — at least, a low-order polynomial algorithm. 
• Breaking the encryption — that is, decrypting it without a key — should 

involve solving an intractable problem — exponential cost or higher. 
• The system should offer assurances to both sender and receiver 

o Message stands alone as a voucher of the transaction — that is, 
neither the sender nor the receiver can forge it.   

o Receiver can establish sender’s unique identity 
o Sender can establish that receiver has not modified message 
o The encrypted message conveys no knowledge that would let the 

sender impersonate the receiver — even by forwarding the same 
message to a third party.  

• Sender can initiate a secure communication without exchanging secret 
information, such as the keys required in a single-use code or a 
substitution code.  (See last lecture.) 

Each of these properties plays an important role in establishing widespread, 
secure digital communication.  (Examples include https, ssh, ssl, & tls.) 
The widely-used scheme for “public-key cryptography” was introduced in 
1976 by Whitfield Diffle and Martin Helman.  The best known and most 
widely used cryptosystem (for public-key systems) is the RSA algorithm, 
die to Rivest, Sharir, and Adelman. 
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The Model 
Assume that our encryption system works through two functions: 
 ciphertext = Encr (message), and 
 message = Decr (ciphertext) 
Further, we will assume that Encr and Decr are related, but that holding one 
does not reveal the other.  That is, given Encr and an encrypted message, the 
problem of deducing Decr remains computationally intractable — hidden 
behind a problem of exponential or higher complexity.  Now, if we ensure 
that Encr and Decr are commutative, that is 
 Decr(Encr(M)) = M     and    Encr(Decr(M)) = M 
Then we can create a workable public-key encryption system as follows: 
1. Each person has a unique Encr and Decr function, designated with a 

subscript.   
2. Each person publishes their Encr function in a public registry. 
As long as generating new Encr and Decr functions is relatively easy, 
cracking them requires solving a computationally intractable problem, and 
we can create a public registry of Encr functions, we can make this system 
work. 
For Fred to send an encrypted message to Jane, he can simply encrypt it 
using Jane’s “public key” — EncrJane — and she can read it using her 
“private key” — DecrJane.  Anyone with access to the registry can locate 
Jane’s public key and send her a message that only she can read.   
Remember, Encr and Decr must be functional inverses and knowing one 
cannot give you the other — unless you solve a computationally intractable 
problem. 
So far, this scheme works.  However, anyone can send Jane a message and 
claim to be Fred.  The encrypted message depends on the message and on 
Jane’s encryption keys, but has no context that makes it unique to Fred.  
Remember, the Encr  key is published in a registry. 
To create a message that can only come from Fred (a signed message), Fred 
can use his Decr process on the message to create a ciphertext that can be 
decoded with his publicly available Encr.  Next, he encodes the ciphertext 
with Jane’s Encr.  Jane decodes the ciphertext that she receives with her 



Decr process, then uses Fred’s publicly registered Encr process to recover 
the original plaintext message. 
The message that Fred transmits is a unique function of Fred’s public and 
private keys (ensuring that it cannot be forged), of Jane’s public and private 
keys (ensuring that no one but Jane can decrypt and read it), and (of course) 
of the original plaintext.   As long as our cryptosystem (Encr and Decr) 
cannot be cracked (knowing Encr, derive Decr), this method securely sends 
a signed message from Fred to Jane. 
Assume that the receiver is less than scrupulous and wants to forge the 
communication.  Jane could create the ciphertext EncrJane(M), but she cannot 
create the signature, since that required Fred’s private secret, DecrFred.  
Jane could send the message to someone else, by taking the DecrJane of 
Fred’s original message and encrypting it with the new recipient’s publicly-
registered Encr function.  That would create a message that looked as if it 
were sent securely from Fred to the new recipient.  This particular problem 
is easily avoided.  If Fred includes in his encoded message enough context to 
make this kind of forgery obvious — such as “Jane – This message is from 
Fred and is intended to convey the following information: …” — then the 
forgery will be obvious.  
(Jane cannot modify the message that Fred sent to change the name, since 
she needs DecrFred(M) to fake his signature.  If she modifies the message, it 
will decrypt into garbage rather than into the correct plaintext.) 
RSA — How does it work? 
The key to RSA cryptography is a clever use of algebra and number theory 
to create a system that can only be cracked by factoring very large numbers.  
Finding very large numbers is not that hard.  Factoring them is much harder; 
researchers believe that no polynomial-time algorithm exists, even using 
randomization or probabilistic attacks (see Chapter 11). 
To set up her Encr and Decr functions, Jane chooses two large (300 digit) 
prime numbers, P and Q, along with a public exponent G.  Let N = P x Q. 
The three numbers must have the properties that (P-1) and G are relatively 
prime, as are (Q-1) and G.  Using a prime as G ensures the property, but 
nonprimes will work, too.  A favorite choice for G is 216 + 1, or 65,537. 
Jane chooses her private exponent, K, as the multiplicative inverse of  
 G  modulo (P-1) x (Q-1), 



so that  K x G ÷ ((P-1) x (Q-1)) = 1, or K x G  = 1, modulo ((P-1) x (Q-1)).  
Now, she can use a simple and efficient algorithm.  She posts the pair 
<G,N> as her public key and keeps K  as her private key.  Now, the public 
Encr function breaks the message into numbers between 0 and N-1. For each 
such number M, Encr computes 
 MG modulo N. 
For a ciphertext H encrypted this way, the decryption process breaks it into 
the appropriate number of bits and computes  
 HK modulo N. 
Number theory and algebra show that these two functions are inverses. 
To crack the private function, one must find K.  However, we chose K as a 
function of G and the two numbers (P-1) and (Q-1).   Since P and Q are the 
prime factors of G (and, thus, G has about 600 digits), we would need a 
major theoretical breakthrough in factoring to find P and Q  in any 
reasonable amount of time.  
The best known methods for factoring take time exponential in the length of 
G, so the system is considered uncrackable.  As computers get faster, we can 
simply use longer prime numbers and gain an exponential increase in 
difficulty. 
Public Registries and Usability 
Of course, all of this choosing and factoring is something that the average 
computer user (such as my eleven year old daughter) does not want to do. 
Fortunately, software exists to easily choose the appropriate numbers, record 
the public keys in a registry, and build the private key into a software form 
where the user does not need to remember 300 digit prime numbers or their 
products.  You may see terms such as SSL certificate — as in, a message 
from a mail system or an ISP that someone’s SSL certificate has expired.  
The certificate is nothing more than a public-key pair <G,N>, provided by 
one of the many registry services that exist on the Internet.  (When you 
register for wireless at Rice, you are asked to accept such a certificate into 
your browser — which conveniently keeps track of it.) 
  
 
 
 


