

Reading Strings of Input
Many problems in Computer Science are characterized by recognizing
specific patterns in a string of input. Recognizing a URL (uniform resource
locator, as in a web browser — http://www.owlnet.rice.edu/~comp200 is a
URL), understanding a typed command line, reading a line of Scheme code
in DrScheme’s definitions window, and parsing a string given to the Google
or MSN search pages — all of these are simple input recognition problems.
If we wanted to recognize some string, such as “http”, we might write code
such as
 c ← read()
 if c ≠ ‘h’
 then report failure and stop

 c ← read()
 if c ≠ ‘t’
 then report failure and stop

 c ← read()
 if c ≠ ‘t’
 then report failure and stop

 c ← read()
 if c ≠ ‘p’
 then report failure and stop

Rules of operation:
1. Start in the initial state
2. On each input character, follow the appropriate transition
3. When input is exhausted, if state is a final state, accept (else reject)

COMP 200: Elements of Computer Science
Fall 2004
Lecture 33: November 19, 2004

Describing Syntax — Finite Automata

final state

error
transition h

t

t

p

To recognize a second string, such as “fee”, we could build a second
recognizer. If the string was related, as in “https” or “heat”, we could
combine the recognizers so that they used common states. (A recognizer for
“https” would simply add another final state, a transition using ‘s’ from the
current final state to the new final state, and one more error transition.)
We can design recognizers around the state transition diagrams. It turns out
that we can easily and mechanically turn a state diagram into program text
(code). If the code is written in some stylized, standard form, as our example
is, we can also go from the code to the state diagram.
Recognizing More Complex Words
Consider a recognizer, or finite automaton, that recognizes integers. It
might look like

This one does not look finite. In fact, it looks as if it goes on forever. And,
where does the final state go? We can make them all final states, except for
the initial state and the error state. If we bound the length of the integer, we
get a finite state diagram. Another way to approach the problem of arbitrary
length strings is to allow a state to transition back to itself.

This automaton is finite. It accepts any finite integer. (It doesn’t accept an
infinite integer because it never stops running along the circular transition.)

1—9

0—9 0—9 0—9 0—9

1—9

0—9

It clearly requires a small finite amount of space. It makes one transition per
input character, so it should be O(| input |).
These finite automata ae quire powerful. Given two finite automata, we can
always construct a finite automaton that is their union. (Merge their start
states, and we may need to merge more if they have common prefixes. The
full proof is harder than that, but follows along those lines.) This simple
property ensures us that we can recognize any word in a list of words in time
proportional to the size of the word. (Build a finite automaton for each
word; merge the automata; run the result. It always takes one transition per
input character.)
This technology is used in products that block URLs and that recognize
blacklisted email addresses. We cannot expect, in general, to recognize
strings faster than O(| input |).
[It turns out, we can sometimes recognize a string in sublinear time – that is,
without looking at all the characters. The ideas is simple, but the math is
complex. We compute a failure function that tells us, for each position in
the pattern, how far over we can skip in the input. After all, we know that
we have matched some part of the pattern, so we know whether or not that
matched part contains another prefix of the string. However, as the number
of words in our list grows, the opportunities for skipping letters will
diminish until, in the limit, we get back to O(| input |). URL blocking
services have very large lists – hundreds of thousands of URLs.)
Formalism – What can a finite automaton do?
These finite automata are equivalent to Turing Machines with a one-way
tape – that is, the tape is constrained to only move left. We talked about the
fact that the Turing machines were fairly robust – one way infinite tapes are
equivalent to two-way infinite tapes and so on. This restriction – one-way
motion – severely limits the power of the Turing machine.
A finite automaton cannot count. It cannot match parentheses; that would
involve encoding the open parentheses in some set of states and then
backing up through them. (Draw a six-paren deep machine. The general
machine needs one state per level it counts.)
We cannot recognize a palindrome. Again, that requires matching up
symbols, which is akin to counting.
However, this subject is a little subtle. A finite automaton can recognize
bounded sets and bounded differences – strings with alternating a’s and b’s
or with even numbers of a’s and b’s.

