
 
 
Reading Strings of Input 
Many problems in Computer Science are characterized by recognizing 
specific patterns in a string of input.  Recognizing a URL (uniform resource 
locator, as in a web browser — http://www.owlnet.rice.edu/~comp200 is a 
URL), understanding a typed command line, reading a line of Scheme code 
in DrScheme’s definitions window, and parsing a string given to the Google 
or MSN search pages — all of these are simple input recognition problems. 
If we wanted to recognize some string, such as “http”, we might write code 
such as  
 c ← read() 
 if c ≠ ‘h’  
      then report failure and stop 
 
 c ← read() 
 if c ≠ ‘t’  
      then report failure and stop 
 
 c ← read() 
 if c ≠ ‘t’  
      then report failure and stop 
 
 c ← read() 
 if c ≠ ‘p’  
      then report failure and stop 
 
Rules of operation: 
1. Start in the initial state 
2. On each input character, follow the appropriate transition 
3. When input is exhausted, if state is a final state, accept (else reject) 
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To recognize a second string, such as “fee”, we could build a second 
recognizer.  If the string was related, as in “https” or “heat”, we could 
combine the recognizers so that they used common states.  (A recognizer for 
“https” would simply add another final state, a transition using ‘s’ from the 
current final state to the new final state, and one more error transition.)   
We can design recognizers around the state transition diagrams.  It turns out 
that we can easily and mechanically turn a state diagram into program text 
(code). If the code is written in some stylized, standard form, as our example 
is, we can also go from the code to the state diagram.  
Recognizing More Complex Words 
Consider a recognizer, or finite automaton, that recognizes integers.  It 
might look like  
 
 
 
 
 
 
This one does not look finite. In fact, it looks as if it goes on forever. And, 
where does the final state go?  We can make them all final states, except for 
the initial state and the error state. If we bound the length of the integer, we 
get a finite state diagram. Another way to approach the problem of arbitrary 
length strings is to allow a state to transition back to itself. 
 
 
 
 
 
 
 
This automaton is finite. It accepts any finite integer. (It doesn’t accept an 
infinite integer because it never stops running along the circular transition.) 
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It clearly requires a small finite amount of space. It makes one transition per 
input character, so it should be O(| input |). 
These finite automata ae quire powerful. Given two finite automata, we can 
always construct a finite automaton that is their union.  (Merge their start 
states, and we may need to merge more if they have common prefixes.  The 
full proof is harder than that, but follows along those lines.)  This simple 
property ensures us that we can recognize any word in a list of words in time 
proportional to the size of the word.  (Build a finite automaton for each 
word; merge the automata; run the result.  It always takes one transition per 
input character.) 
This technology is used in products that block URLs and that recognize 
blacklisted email addresses. We cannot expect, in general, to recognize 
strings faster than O(| input |).   
[It turns out, we can sometimes recognize a string in sublinear time – that is, 
without looking at all the characters.  The ideas is simple, but the math is 
complex.  We compute a failure function that tells us, for each position in 
the pattern, how far over we can skip in the input.  After all, we know that 
we have matched some part of the pattern, so we know whether or not that 
matched part contains another prefix of the string.  However, as the number 
of words in our list grows, the opportunities for skipping letters will 
diminish until, in the limit, we get back to O(| input |).  URL blocking 
services have very large lists – hundreds of thousands of URLs.) 
Formalism – What can a finite automaton do? 
These finite automata are equivalent to Turing Machines with a one-way 
tape – that is, the tape is constrained to only move left.  We talked about the 
fact that the Turing machines were fairly robust – one way infinite tapes are 
equivalent to two-way infinite tapes and so on.  This restriction – one-way 
motion – severely limits the power of the Turing machine.  
A finite automaton cannot count. It cannot match parentheses; that would 
involve encoding the open parentheses in some set of states and then 
backing up through them.  (Draw a six-paren deep machine.  The general 
machine needs one state per level it counts.) 
We cannot recognize a palindrome.  Again, that requires matching up 
symbols, which is akin to counting. 
However, this subject is a little subtle.  A finite automaton can recognize 
bounded sets and bounded differences – strings with alternating a’s and b’s 
or with even numbers of a’s and b’s. 


