
 
 
Regular Expressions, Again 
Last class we introduced regular expressions as a way of denoting the 
languages that a deterministic finite automaton can recognize.  To review, 
regular expressions (REs) are defined by the following rules: 

1. If s is a symbol in the alphabet, we say that s is an RE that denotes 
that symbol. 

2. If s & t are REs, then 
a. s followed by t is an RE, denoted st    
b. s or t is an RE, denoted s | t  
c. zero or more concatenated copies of s is an RE, denoted s*  and 

called the closure of s or the Kleene closure of s 
3. We sometimes define the positive closure of s as ss*  denoted as s+  

Regular expressions are equivalent in their expressive power to the finite 
automata that we saw last class.  They can recognize any finite list of 
symbols in time proportional to the number of symbols in the input string. 
They cannot count, as in palindromes or matching parentheses. 
Grammars 
To express a broader class of languages, we need to introduce a more 
complex notation for syntax.  Among Computer Scientists, the most 
common formalism used to express syntax is a grammar — a set of symbols 
and productions (or rewrite rules) that allow us to derive any word in the 
language. One ancient (in Computer Science terms) notation for writing 
down a grammar is called Backus-Naur form, after John Backus (leader of 
the team that created Fortran) and Petere Naur (leader of the team that 
created Algol).  Both used a similar notation to describe the set of acceptable 
programs in these early programming languages.  The result was widespread 
use of BNF. 
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More Expressive Ways of Describing Syntax  

We use the term 
concatenation 



Symbols in a grammar fall into two categories — those that can appear in a 
sentence in the language described by the grammar and those that are simply 
syntactic variables used to give structure to the grammar and to allow the 
grammar to express more than one sentence.  The former symbols (the ones 
that appear in sentences) are called terminal symbols.  The latter symbols 
are called, conversely, nonterminal symbols.  Because BNF was invented in 
the days of typewriters (i.e., before the rich typography of laser printers), the 
notation for distinguishing between terminal and nonterminal symbols was 
somewhat crude — terminals are underlined and nonterminals are written 
between <brackets>.  
Productions, or rewrite rules, define the syntactic relationship between 
symbols.  The rule  
 <fee> ::= fie foe fum  
states that the syntactic variable <fee> derives (::=) the string of terminal 
symbols fie foe fum.  A grammar is just a collection of such rules, along 
with an initial symbol that tells us where to start rewriting.  (The rewriting 
process is simpler than the one we used to define the meaning of Scheme 
programs, because rewriting a grammar rule involves no substitution of one 
name — or parameter — for another symbol.)   
To make this concrete, lets consider a complete grammar, SN. 
 Symbols in SN = { <SN>, baa } 
 Rules in SN = { <SN> ::= baa  <SN> ;  <SN> ::= baa } 
To simplify writing the rules, we can use the symbol “|” to mean also 
derives, which allows us to write the rules for SN as 
 { <SN> ::= baa  <SN>  |  baa } 
Using this grammar, and starting with <SN>, we can derive a number of 
important sentences. (<SN> is the obvious start symbol, since it is the only 
nonterminal in the grammar.  In a more complex grammar, we would need 
to designate the start symbol.) 

— derive one, two, and three syllable Sheep Noise 
Grammars, of course, have more dignified uses.  We might, in specifying a 
programming language, want to specify its syntax.  For Scheme, expressions 
might be defined as  
 
 <SExpr>           ::= ( <list of names> ) 



 <list of names> ::= <list of names> name  
                                     |    name 
Using the rewrite rules, we can derive any Scheme expression, except ( ). A 
<list of names> must contain a single name.   If we wanted zero-length lists, 
we could add an alternate rule to the definition of <SExpr> that derived ( ). 
Programming languages are specified with a grammar, usually written in 
BNF.  The BNF for a language does not constitute the complete 
specification. For example, in our definition of Scheme, the first name in the 
list must be a function (either built into Scheme or user-supplied) and the 
number of arguments that the function requires must match the cardinality of 
the list, minus one.  This requirement is an extra-syntactic rule — that is, it 
is hard to write or to enforce in a grammatical way.   
To enforce it in the grammar, we would need to have a different terminal 
symbol for function names than for the names of other objects.  This 
requirement, in turn, would tremendously complicate the rules of Scheme or 
raise the algorithmic complexity of checking the syntax of a Scheme 
program.  Instead, software systems use other mechanisms to enforce such 
restrictions. 
As long as we restrict the form of the rules in our grammar so that they have 
only one nonterminal on the right hand side, the grammars are called 
context-free grammars.  (With more than one nonterminal on the right hand 
side, the grammar can specify strange non-local properties, such as only use 
the name <fee> as a function name if it has already appeared as a function 
name. The extra power makes the process of recognizing  — or parsing — a 
sentence in the language much more complex.) 
Sentences in a context-free grammars can be recognized in time proportional 
to the number of steps in the rewriting sequence that produced the sentence 
— that is, the number of symbols in the derivation.  Note:  recognizing a 
sentence is the inverse of deriving one. The algorithms are arcane, but can be 
automated so that you provide a BNF for the grammar and the tool gives you 
back a program that builds a derivation tree for an arbitrary sentence in the 
language and reports errors if the sentence is not in the language. 
Power of Context-free Grammars 
A context-free grammar can describe languages that a regular expression 
cannot.  For example, a CFG can handle palindromes and parentheses.   
Formalism 



Regular expressions are equivalent to deterministic finite automata, which 
are equivalent to deterministic Turing machines with one-way motion on the 
tape (can only move left). 
A context-free grammar is equivalent to a deterministic Turing machine with 
a stack rather than a tape.  (Parenthesis recognition is easy. Push open 
parentheses. Every time it encounters a close parenthesis, it pops the stack. 
At the end, if the stack is empty, the parentheses all matched.  Popping an 
empty stack diagnoses too many close parentheses.  A non-empty stack at 
termination diagnoses too many open parentheses.) 
We have a hierarchy — REs <= CFGs <= CSGs ??<= ??Turing machiness 


