

Regular Expressions, Again
Last class we introduced regular expressions as a way of denoting the
languages that a deterministic finite automaton can recognize. To review,
regular expressions (REs) are defined by the following rules:

1. If s is a symbol in the alphabet, we say that s is an RE that denotes
that symbol.

2. If s & t are REs, then
a. s followed by t is an RE, denoted st
b. s or t is an RE, denoted s | t
c. zero or more concatenated copies of s is an RE, denoted s* and

called the closure of s or the Kleene closure of s
3. We sometimes define the positive closure of s as ss* denoted as s+

Regular expressions are equivalent in their expressive power to the finite
automata that we saw last class. They can recognize any finite list of
symbols in time proportional to the number of symbols in the input string.
They cannot count, as in palindromes or matching parentheses.
Grammars
To express a broader class of languages, we need to introduce a more
complex notation for syntax. Among Computer Scientists, the most
common formalism used to express syntax is a grammar — a set of symbols
and productions (or rewrite rules) that allow us to derive any word in the
language. One ancient (in Computer Science terms) notation for writing
down a grammar is called Backus-Naur form, after John Backus (leader of
the team that created Fortran) and Petere Naur (leader of the team that
created Algol). Both used a similar notation to describe the set of acceptable
programs in these early programming languages. The result was widespread
use of BNF.

COMP 200: Elements of Computer Science
Fall 2004
Lecture 34: November 19, 2004

More Expressive Ways of Describing Syntax

We use the term
concatenation

Symbols in a grammar fall into two categories — those that can appear in a
sentence in the language described by the grammar and those that are simply
syntactic variables used to give structure to the grammar and to allow the
grammar to express more than one sentence. The former symbols (the ones
that appear in sentences) are called terminal symbols. The latter symbols
are called, conversely, nonterminal symbols. Because BNF was invented in
the days of typewriters (i.e., before the rich typography of laser printers), the
notation for distinguishing between terminal and nonterminal symbols was
somewhat crude — terminals are underlined and nonterminals are written
between <brackets>.
Productions, or rewrite rules, define the syntactic relationship between
symbols. The rule
 <fee> ::= fie foe fum
states that the syntactic variable <fee> derives (::=) the string of terminal
symbols fie foe fum. A grammar is just a collection of such rules, along
with an initial symbol that tells us where to start rewriting. (The rewriting
process is simpler than the one we used to define the meaning of Scheme
programs, because rewriting a grammar rule involves no substitution of one
name — or parameter — for another symbol.)
To make this concrete, lets consider a complete grammar, SN.
 Symbols in SN = { <SN>, baa }
 Rules in SN = { <SN> ::= baa <SN> ; <SN> ::= baa }
To simplify writing the rules, we can use the symbol “|” to mean also
derives, which allows us to write the rules for SN as
 { <SN> ::= baa <SN> | baa }
Using this grammar, and starting with <SN>, we can derive a number of
important sentences. (<SN> is the obvious start symbol, since it is the only
nonterminal in the grammar. In a more complex grammar, we would need
to designate the start symbol.)

— derive one, two, and three syllable Sheep Noise
Grammars, of course, have more dignified uses. We might, in specifying a
programming language, want to specify its syntax. For Scheme, expressions
might be defined as

 <SExpr> ::= (<list of names>)

 <list of names> ::= <list of names> name
 | name
Using the rewrite rules, we can derive any Scheme expression, except (). A
<list of names> must contain a single name. If we wanted zero-length lists,
we could add an alternate rule to the definition of <SExpr> that derived ().
Programming languages are specified with a grammar, usually written in
BNF. The BNF for a language does not constitute the complete
specification. For example, in our definition of Scheme, the first name in the
list must be a function (either built into Scheme or user-supplied) and the
number of arguments that the function requires must match the cardinality of
the list, minus one. This requirement is an extra-syntactic rule — that is, it
is hard to write or to enforce in a grammatical way.
To enforce it in the grammar, we would need to have a different terminal
symbol for function names than for the names of other objects. This
requirement, in turn, would tremendously complicate the rules of Scheme or
raise the algorithmic complexity of checking the syntax of a Scheme
program. Instead, software systems use other mechanisms to enforce such
restrictions.
As long as we restrict the form of the rules in our grammar so that they have
only one nonterminal on the right hand side, the grammars are called
context-free grammars. (With more than one nonterminal on the right hand
side, the grammar can specify strange non-local properties, such as only use
the name <fee> as a function name if it has already appeared as a function
name. The extra power makes the process of recognizing — or parsing — a
sentence in the language much more complex.)
Sentences in a context-free grammars can be recognized in time proportional
to the number of steps in the rewriting sequence that produced the sentence
— that is, the number of symbols in the derivation. Note: recognizing a
sentence is the inverse of deriving one. The algorithms are arcane, but can be
automated so that you provide a BNF for the grammar and the tool gives you
back a program that builds a derivation tree for an arbitrary sentence in the
language and reports errors if the sentence is not in the language.
Power of Context-free Grammars
A context-free grammar can describe languages that a regular expression
cannot. For example, a CFG can handle palindromes and parentheses.
Formalism

Regular expressions are equivalent to deterministic finite automata, which
are equivalent to deterministic Turing machines with one-way motion on the
tape (can only move left).
A context-free grammar is equivalent to a deterministic Turing machine with
a stack rather than a tape. (Parenthesis recognition is easy. Push open
parentheses. Every time it encounters a close parenthesis, it pops the stack.
At the end, if the stack is empty, the parentheses all matched. Popping an
empty stack diagnoses too many close parentheses. A non-empty stack at
termination diagnoses too many open parentheses.)
We have a hierarchy — REs <= CFGs <= CSGs ??<= ??Turing machiness

