

From the Last Lecture
The take-away point from Monday’s lecture should be that the set of
languages and grammars have a natural hierarchical structure, analogous to
the hierarchy of complexities that exist in world of algorithms. In
algorithms, we have a collection of problems that can be solved in O(n)
time, then more algorithms that can be solved in low-order polynomial time
[for example, sorting has lower and upper bounds of O(n log2 n)], then
polynomial time (any fixed exponent on the polynomial), then those
problems where we do not know of a polynomial algorithm. The latter class
of problems includes many where the algorithmic gap (the distance between
the lower bound and the best known algorithm — the upper bound) is large.
Similarly, for languages, regular languages (defined by finite automata and
regular expressions — which are equivalent) are a strict subset of the
context-free languages (defined by context-free grammars) which are a
subset of the set of context-sensitive languages (defined by context-sensitve
grammars).
Regular languages correspond to languages that can be recognized by a
Turing machine that can only move left on its tape. Context-free languages
correspond to languages that can be recognized by a Turing machine with a
stack rather than a tape. Context-sensitive languages require a tape with two
directions of movement.
Regular languages can be recognized in time that is linear in the length of
the input string (not the grammar or the expression). Several important
subsets of the context-free languages can be recognized in time that grows
linearly in the input string, too. (These are called deterministic context-free
languages and include the important subsets the LL(1) and LR(1) languages.
The details are arcane and covered, at best, in COMP 412). General context-
free grammars require O(n3) time to recognize (Cocke-Younger algorithm,
Kasami’s algorithm, Earley’s algorithm).

COMP 200: Elements of Computer Science
Fall 2004
Lecture 35: November 24, 2004

Review and Conclusions

One Last Algorithm – Monte Carlo Approximation of PI
Assume that you have a function that can return you a random number
between zero and one. (You can always use a function that returns a random
number between 0 and n — just divide the result by n.)
We can use the random number generator to approximate the value of PI.
Consider the unit square — from (0,0) to (1,1) through corners at (1,0) and
(0,1). If we throw darts at the square — pairs of random numbers between
zero and one, inclusive — then the ratio of those darts that fall inside the
unit circle to those inside the unit square should be PI/4 to 1.
Throw 100 darts. For each dart, compute the distance between the dart and
(0,0) — using the LineLength function from back when we studied
structures. (If the dart is (x,y), the distance is just the square root of

x*x + y * y
which we can compute pretty quickly. If we count the number of darts for
which this distance is less than or equal to 1, and multiply by four, we get an
approximate value for PI. To improve our approximation, we can look at
more darts.
We did not use this as a lab because Dr.Scheme has a lousy random number
generator. My approximator converged to about 3.2.

Review — or, what have we done in 35 lectures …
Back in Lecture 1, I asked you to define an algorithm. After I got tired of
the blank stares, I proposed two definitions from classes that I took as an
undergrad: an effective procedure for solving a problem or a Turing
machine that always halts. You were mystified by these definitions; today
we can have a deep discussion on them.
Algorithms and how to express them
1. Simple programming in Scheme

→ Recursion, conditionals, working with structures and lists, set! for
changing the value associated with a Scheme name (or object),
structural induction over the counting numbers

→ Hand evaluation of Scheme programs (the rewriting rules)
2. Data structures

→ Scheme’s struct, vectors, arrays, lists, stacks, queues, trees, graphs,
3. Algorithmic strategies

→ Traversing a graph, divide and conquer, greedy, dynamic planning
4. Complexity of Algorithms

→ Upper bounds, lower bounds, algorithmic gaps, NP-complete
problems

5. Computing via biological analogy
→ Viruses, worms, Trojan horses, genetic algorithms, artificial

intelligence, and the Turing test
6. Models of computation

→ Turing machines, universal Turing machines, Church-Turing thesis
→ Finite automata, regular languages, context-free languages, and the

limited versions of Turing machines that correspond to these
models

7. Cryptography
→ Substitution codes, one-way ciphers, public-key encryption, RSA

algorithm (and the way that it uses complexity theory to defeat
attackers — hiding behind factorization)

8. How programs execute

→ From Scheme code to interpreters and compilers
→ How system architects build up a processor from things that

(intellectually) resemble a Turing machine
→ From a Turing machine to a modern PC

Algorithms:

• Searching a phonebook (linear search, binary search, and some
allusion to encoding names into integers so you can find any name in
O(1) time.)

• PointAdd, PointSubtract, Euclidean distance (line length)
• Lists: List length, sum a list of numbers, take their average, Max,

Min, and MaxMin (divide-and-conquer example from every
algorithms textbook ever written)

• Induction on integers: Sum 1 to n, Factorial of n (product from 1 to n)
• Making change with the greedy algorithm
• Insertion sort, bubblesort, mergesort, quicksort
• Minimum cost spanning trees (18)
• Class scheduling (18)
• Manhattan grid problem or Rice to the Galleria by car
• Recognizing a palindrome (or parentheses languages)

COMP 200 Final Project Presentations

Monday, 1st

Monday, 2nd

Monday, 3rd

Monday 4th

Wednesday, 1st Ian / Elizabeth

Wednesday, 2nd

Wednesday, 3rd

Wednesday, 4th

Friday, 1st Kira / Griffith

Friday, 2nd

Friday, 3rd

Friday, 4th

Other

Other

Other

Other

