
Moving Beyond Linear Forms of Expression

While traditional programming is done in languages that are similar to our
pseudocode (C, C++, Java, Python, Perl, …), other programming paradigms
have a significant role in the real world.

Spreadsheets

In 1978 or 1979, Dan Bricklin had an insight that revolutionized the practice
of both business and programming. He observed that many of the activities
involved in the financial end of business — from the balance sheet of a
major corporation to the checkbook of a single household — were expressed
in a tabular form. Bricklin, along with his partner Bob Frankston wrote a
program that allowed users to build tabular worksheets on the personal
computers of their day — machines that were small, slow, and clumsy by
modern standards. Their program, VisiCalc, introduced the idea of a
spreadsheet and contained most of the features found in a modern
spreadsheet such as Excel (exceptions include multiple linked worksheets in
a single workspace & many of the library functions).

The idea behind VisiCalc was simple. The user has a table of cells. Each
cell is defined with a constant or a formula. Formulas consist of arithmetic
expressions over constant values, operators, and references to cell values.
Self-referential formulas are not allowed.

The VisiCalc model lacks control structures — no conditional execution, no
iteration, no recursion. Still, it proved to be a powerful paradigm that let
ordinary users create programs of stunning sophistication. VisiCalc, and its
successors such as Lotus-1-2-3 and Excel, harnessed the growing power of
commodity microprocessors to a range of tasks that arise in business and
made the “personal” computer an essential tool of business. In some sense,
Bricklin is responsible for the success of the personal computer industry.
VisiCalc was the “killer application” for personal computers.

COMP 200: Elements of Computer Science
Fall 2004
Supplemental Material

Graphical Programming Environments

Another important paradigm that moves away from programming languages
expressed as a linear string of characters is graphical programming. The
idea behind these programming environments is simple — tasks are
represented as objects on the screen that consume inputs and produce
outputs. The user “programs” by selecting objects and connecting them.

The idea of graphical programming has been around since the 1950s, when
programmers were taught to express programs as flowcharts. Many minor
systems have been built over the years, in both academia and industry.

In the 1990s, commercial exploitation of this idea took a serious turn with
the introduction of LabView, a graphical programming environment built by
National Instruments of Austin, TX. LabView began life as a tool for
controlling instruments. It has grown into a more general programming
environment. A recent Rice MS thesis demonstrated how to connect the
graphical language of LabView to the lambda calculus, a standard tool used
by programming language theorists to reason about the meaning of programs
and the expressiveness of programming languages.

(The lambda calculus is intimately related to Scheme, the programming
language that we will us in some of our assignments this semester.)

