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Instructions 
1. This exam is conducted under the Rice Honor Code.  It is a closed-notes, closed-book exam. 
2. Fill in your name on every page of the exam. 
3. If you forget the name of a Java class or method, make up a name for it and write a brief explanation in the 

margin. 
4. You are expected to know the syntax of defining a class with appropriate fields, methods, and inheritance 

hierarchy.  You will not be penalized on trivial syntax errors, such as missing curly braces, missing semi-
colons, etc, but do try to write Java code as syntactically correct as possible.  We are more interested in 
your ability to show us that you understand the concepts than your memorization of syntax! 

5. Write your code in the most object-oriented way possible, that is, with the fewest number of control 
statements and no checking of the states and class types of the objects involved. 

6. For each algorithm you are asked to write, 90% of the grade will be for correctness, and 10% will be for 
efficiency and code clarity. 

7. You have two hours and a half to complete the exam. 
 
Please State and Sign your Pledge: 
 

 
 

 
 

1a) 10 1b) 10 2a) 5 2b) 5 2c) 10 3) 20 4a) 10 4b) 10 5) 20 TOTAL 100 
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1. (20 pts total) In the spring, a young man’s fancy turns to…life after the SuperBowl.  But the memories of a 
Sunday in January linger.  Football teams like the Panthers and the Patriots each have a specific “game plan” 
which they hope will enable them to win.  For instance, the Panthers were noted during the season as a team 
whose game plan focused on running the ball, while the Patriots were noted for favoring game plans that 
emphasized passing the ball. 

 
a. (10 pts) Draw a UML class diagram that illustrates the basic relationships between a football team, a game 

plan and game plans that emphasize running or passing.  Omit any methods or fields from your diagram. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

b. (10 pts) In a couple of sentences, describe all the design patterns used in your design for part a).   Clearly 
explain your reasons for using them. 

 
 
 
 
Union design pattern:   IGamePlan is the union of its subclasses, RunningGame and PassingGame 
Strategy design pattern:  AFootballTeam uses (delegates to) IGamePlan as a strategy to win football 
games. 
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2. (20 pts total) Consider the following code: 
 

public interface IStockbroker { 
    public abstract String getAdvice(); 
} 
 
public class Schwab implements IStockbroker { 
    public String getAdvice() { 
        return “buy Microsoft!”; 
    } 
} 
 
public class MerrillLynch implements IStockbroker { 
    public String getAdvice() { 
        return “sell ImClone!”; 
    } 
} 
 
public class Investor { 
    private IStockbroker _sb; 
    public Investor(IStockbroker sb) { 
        _sb = sb; 
    } 
 
    public void setStockBroker(IStockbroker sb) { 
        _sb = sb; 
    }  
 
    public String tradeStock() { 
        return “I am going to ”+_sb.getAdvice(); 
    } 
} 

 
 

a) (5 pts) What design pattern(s) is(are) being implemented in the above system of classes? 
 

 
Union design pattern:  IStockbroker is the union of MerrillLynch and Schwab. 
Strategy design pattern:  the Investor uses (delegates to) the IStockbroker as a strategy for 
investing. 

 
 
 
 

b) (5 pts) What will appear on the screen when the follow code is executed? 
 

Investor aPerson = new Investor(new Schwab()); 
System.out.println(aPerson.tradeStock()); 
aPerson.setStockbroker(new MerrillLynch()); 
System.out.println(aPerson.tradeStock()); 
 
 
 
I am going to buy Microsoft! 
I am going to sell ImClone! 
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c) (10 pts) What classes represent the invariant behaviors?  What classes represent the variant behaviors?  
Explain your answers in a few short sentences. 

 
 

Investor and IStockbroker represent the invariant behaviors because their code is independent of 
which concrete type of stockbroker is being used.  MerrillLynch and Schwab represent the variant 
behaviors because their code each has a specific sort of investment strategy. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3. (20 pts) A function is an abstract mathematical computation that takes an input, performs some calculation and 

produces an output.  In theoretical computer science, such a function is called a “lambda.”  In OOP, we can 
model abstract functions as an interface defined as follows. 

 
public interface ILambda { 
    /** 
     * Takes an Object x as input, performs some computation 
     * and returns an Object as output. 
     */ 
    public Object apply(Object x); 
} 
 

For instance, the following are two concrete lambda functions: 
 
public class Lambda1 implements ILambda { 
    public Object apply(Object x) { 
        return “Lambda1.apply with the input:” + x.toString()); 
    } 
 
public class Lambda2 implements ILambda { 
    public Object apply(Object x) { 
        return “Lambda2.apply with the input:” + x.toString()); 
    } 
 

Consider the following interface, ILogical, that represents objects with the ability to apply one of two 
possible lambda’s: 

 
public interface ILogical { 
    /** 
    * Calls either the trueLambda’s or the falseLambda’s apply method  
    * with the given x, and returns the result. 
    */ 
    public Object select(ILambda trueLambda, ILambda falseLambda, Object x); 
} 

Continued on next page è 
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Define two concrete classes, called True and False, that implement ILogical and satisfy the following 
specification. 

 
When the following is executed with a variable “b” of type ILogical,  
 

b.select(new Lambda1(), new Lambda2(), “host”) 
 
the return value will be  
 

“Lambda1.apply with the input: host”  when b is of type True and  
“Lambda2.apply with the input: host”  when the b is of type False. 

 
Your code for True and False may not  contain any String literals. 
 

Aside: The behavior True and False corresponds to the way that conditional decision-making is performed 
in a pure “message-passing” OO language such as Smalltalk.  In general, this technique is known as “double-
dispatching” because the result is the effect of two consecutive method calls. 

 
 

public class True implements ILogical { 
    public Object select(ILambda trueLambda, ILambda falseLambda, Object x) { 
     return trueLambda.apply(x); 
    } 
} 
 
public class False implements ILogical { 
    public Object select(ILambda trueLambda, ILambda falseLambda, Object x) { 
     return falseLambda.apply(x); 
    } 
} 
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4. (20 pts total) Consider the following system of classes: 
 

//-------------------------------------------------------------------------------- 
package flipflop; 
 
public class FlipFlop { 
  private AFFState _state = new FlipState(); 
   
  public String toString() { 
    return _state.toString(this); 
  } 
   
  void setState(AFFState state) { 
    _state = state; 
  } 
} 
 
//-------------------------------------------------------------------------------- 
package flipflop; 
 
abstract class AFFState {  
  abstract String toString(FlipFlop context); 
}     
 
//-------------------------------------------------------------------------------- 
package flipflop; 
 
class FlipState extends AFFState{  
  String toString(FlipFlop context) { 
    context.setState(new FlopState()); 
    return "Flip"; 
  } 
}     
 
//-------------------------------------------------------------------------------- 
package flipflop; 
 
class FlopState extends AFFState{  
  String toString(FlipFlop context) { 
    context.setState(new FlipState()); 
    return "Flop"; 
  } 
}     
 
//-------------------------------------------------------------------------------- 
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a) (10 pts) Draw a complete UML class diagram of the above system, including all fields and methods for 
every class shown.  Be sure to show the proper access specifiers. 
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b) (10 p[s) What output will the following code produce?  Why?   Be specific and complete! 
 
Operations executed in the following order: Output and reasons for that output: 
flipflop.FlipFlop ff =  
          new flipflop.FlipFlop(); 

No output to screen.  New FlipFlop  instance being created. 

System.out.println(ff.toString()); Output:  “Flip” 
 
FlipFlop’s toString() method always delegates to its 
_state’s toString() method.  _state is initialized to be a 
FlipState, so it’s toString() method returns “Flip”.   But 
FlipState’s toString() method also sets its host 
FlipFlop’s state to be a new FlopState.  

System.out.println(ff.toString()); Output:  “Flop” 
 
FlipFlop’s toString() method always delegates to its 
_state’s toString() method.  _state is currently  set to be 
a FlopState, so it’s toString() method returns “Flop”.   
But FlopState’s toString() method also sets its host 
FlipFlop’s state to be a new FlipState. 

System.out.println(ff.toString()); Output:  “Flip” 
 
FlipFlop’s toString() method always delegates to its 
_state’s toString() method.  _state is currently  set to be 
a FlipState, so it’s toString() method returns “Flip”.   
But FlipState’s toString() method also sets its host 
FlipFlop’s state to be a new FlopState. 

System.out.println(ff.toString()); Output:  “Flop” 
 
FlipFlop’s toString() method always delegates to its 
_state’s toString() method.  _state is currently  set to be 
a FlopState, so it’s toString() method returns “Flop”.   
But FlopState’s toString() method also sets its host 
FlipFlop’s state to be a new FlipState. 
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5. (20 pts) Consider the familiar composite design pattern for the immutable list structure.  Assume the IList 
contains Integer objects.  Write the code for MTList and NEList to compute the sum of the squares of the 
integers in the list as indicated below. 
 

/** 
 * Represents the abstract list structure. 
 */ 
public interface IList { 
    /** 
     * Computes the sum of the squares of the integers in this IList,  
     * assuming it contains Integer objects only. 
     */ 
    Integer sumOfSquares(); 
} 

 
/** 
 * Represents the empty list. 
 */ 
public class MTList implements IList { 
    public static final MTList Singleton = new MTList(); 
    private MTList() { 
    } 
     
   /** 

∗ Student to write appropriate method to compute the sum of 
∗ the squares of integers in this IList. 

   */ 
 
 
    public Integer sumOfSquares() { 
        return new Integer(0); 
    } 
 
 

 
 
 
} 

 
/** 
 * Represents non-empty lists. 
 */ 
public class NEList implements IList { 
   private Object _first; 
   private IList _rest; 
   
   public NEList(Object f, IList r) { 
       _first = f; 
       _rest = r; 
   } 
   /** 

∗ Student to write appropriate method to compute the sum of 
∗ the squares of integers in this IList. 

   */ 
 
 
    public Integer sumOfSquares() { 
        return new Integer(  
            ((Integer)_first).intValue() * ((Integer)_first).intValue() 
            + ((Integer)_rest.sumOfSquares()).intValue() ); 
    } 
 
 
 
 
} 


