Comp202 – Principles of Object Oriented Programming II
EXAM #1

Rice University - Instructor: Wong

NAME & ID#: _______________________________

Instructions
1. This is an open-notes, open-book, open-Internet exam.

2. You have 5 hours to complete this exam.

3. You will not be penalized on trivial syntax errors, such as a missing parenthesis. Multiple errors or errors that lead to ambiguous code will have points deducted, however.

4. In all of the questions, feel free to write additional helper methods to get the job done.

5. The emphasis is on correctness of the code, not efficiency or on simply generating the right result.

6. You are free to use any code that was given to you in the lectures and labs.

7. Zip up and upload the entire exam directory to the Owlspace drop-off site.

8. Bring a signed hardcopy of this file to class on Friday, Oct. 20, 2006.

Please write and sign the Rice Honor Pledge here:

	1
	2
	3a
	3b
	Total

	/25 pts
	/30 pts
	/20 pts
	/25 pts
	/100 pts

1. (30 pts) Lazy Evaluation: In last year’s Comp202 exam #1 (http://www.owlnet.rice.edu/~comp202/06-fall/examresources/exam1f05soln.zip -- note that all necessary code is already included in this exam’s materials), the students were asked to write a lazy evaluator called lrs.lazyEvals.LazyLambdaEval, that created an infinite lazy LRStruct containing a functional expansion of a function of one variable.
Consider an infinite series representation of a function of one variable, S(x):

[image: image1.wmf](

)

(

)

(

)

(

)

å

¥

=

=

+

+

+

+

=

0

3

2

1

0

)

(

)

(

n

n

x

f

x

f

x

f

x

f

x

f

x

S

L

A classic example of this would be a Taylor series approximation of a continuous function. For instance, consider the Taylor series expansion of the sine function:

[image: image2.wmf](

)

å

¥

=

+

+

-

=

+

-

+

-

=

0

1

2

7

5

3

)!

1

2

(

1

!

7

1

!

5

1

!

3

1

)

sin(

n

n

n

x

n

x

x

x

x

x

L

This can be represented in the computer as an infinite lazy list where each term of the Taylor series is an element in the lazy list. Instead of holding simple numerical values in each element of the list, the list holds functions (“lambda functions”) of one variable.

Let’s restrict our notion of a sum of lambdas to polynomial sums

[image: image3.wmf]å

å

¥

=

¥

=

=

+

+

+

+

=

=

0

3

3

2

2

1

1

0

0

0

)

(

)

(

n

n

n

n

n

x

c

x

c

x

c

x

c

x

c

x

p

x

P

L

The n’th element of our lazy list would thus hold the following function:

[image: image4.wmf]n

n

n

x

c

x

p

=

)

(

To represent this specialized lambda function, we will use an extension of our generic lambda function interface to represent the above function:

package fp;

public interface ILambda {

 Object apply(Object ... params);

}
public interface IPowerFn extends ILambda {

 public double getPower();

 public double getCoef();

}

A simple concrete implementation of IPowerFn called PowerFn has been provided.
With this abstraction, the solution to last year’s exam can be recast using the notion of a “generator” which can provide the power and coefficient for any given term of a polynomial expansion as well as advance to the next term:

/**

 * A "generator" function that contains the power and coefficient of a

 * term in a polynomial expansion of a function.

 * Also has the ability to advance to the next term of the expansion.

 */

abstract class APolyGenerator {

 public double power = 0.0;

 public double coef = 1.0;

 /**

 * Advances the power and coef to the next term in the expansion

 */

 public abstract void nextTerm();

}

Particular expansions such as for sin(x), cos(x) or ex can be easily written in terms of such a generator. The generator essentially captures the variant part of the lazy evaluation process.

Using the above new abstractions, the code for last year’s solution to create a lazy lambda evaluator both simplifies and increases in power and flexibility.

Ok. Down to the meat of this year’s problem:

From calculus, you know that it is easy to differentiate a polynomial:

[image: image5.wmf](

)

å

¥

=

-

×

=

1

1

)

(

n

n

n

x

c

n

x

P

dx

d

But this is still just a polynomial expansion! Thus, given a polynomial expansion (lazy or eager), we should be able to create a new polynomial expansion that is the differential of the original. A lazily evaluated solution would cover both the eager and lazy source situations, so we will go for that solution.

You are to write an ALazyEval called LazyDiffLambdaEval that will create a possibly infinite list representing the Taylor series expansion of the derivative of a polynomial function, which may be either finite or infinite. The stub code for this class has been provided.

Some important information:

· LazyDiffLambdaEval must take the source list (the function to differentiate) which is an LRStruct, as an input to its constructor.
· Since we are restricting ourselves to power series, resultant list should contain PowerFn objects, not ILambda‘s as last year’s code did.
· When differentiating a polynomial, any constant term (power = 0), disappears from the expansion (list). Your code should do this too. This can be accomplished with one short line of code.
· To test your code:

· In the definition of LazyLambdaEval, uncomment the generator function you want to use. Generators for sin(x), cos(x) and ex have been provided.

· Select the “Lambda list” check box.

· The “Sum N Lambda terms” button will sum the number of terms of the list specified by “Input/Output A” with the input value given by “Input/Output B”. The result will be displayed in “Input/Output B”.

· Note that for this year, the input values to the trigonometric functions are in radians, not in terms of PI as it was last year. This is because the differentiation cannot be easily generalized when the input value is scaled.
· Test values (> 10 terms) :
	Input
	e(x)
	sin(x)
	cos(x)

	0
	1
	0
	1

	1.0
	2.7182818284590455
	0.8414709848078965
	0.5403023058681397

	1.5707963267948966192313216916398
	4.810477380965351
	1
	0

	3.1415926535897932384626433832795
	23.140692632779274
	0
	-1

	-1.5707963267948966192313216916398
	0.20787957635076193
	-1
	0

a. Click the button labeled “Differentiate Lambda” which will instantiate a LazyDiffLambdaEval instance using the current list as a source list. It assumes that the current list is a list of IPolyFn objects!
b. Verify that the differential of ex is ex, and that sin(x) goes to cos(x) and that cos(x) goes to -sin(x).
c. Continued clicking of the “Differentiate Lambda” button should result in multiple differentials of the polynomial list.
Notes:

a. Think delegation always.

b. There is only one if statement needed.

c. Don’t forget about the possibility that the source list may be or become empty.

The stub code for this section can be found in the lazyEvalCode subdirectory.
Please insert your code for LazyDiffLambdaEval.java below:
2. (35 pts total) Flattening a Tree: Trees are wonderful data structures for storing information because they offer high speed access when properly balanced. However, the rest of the system that is using the tree doesn’t necessarily want to view the data in terms of being in a tree. For instance, if is very common to want to view the data in a linear fashion rather than the multi-dimensional fashion in which it is actually stored. This is called “flattening” the tree. While we rarely do it in this class, a very common process used by programmers is to step through the data in a linear fashion because they want to process it using a loop.
In class, we spent some time discussing tree traversals, which are a form of linear processing of a tree. However, in order to process the tree using a loop, the flattening of the tree must return a single data element and then stop. A subsequent call would then return the next element and so on. This is quite different than the traversals we done so far which process the entire tree at once.
Definitions: An object that presents data elements one at a time is called a “stream”. An object that takes a data structure and presents the data as a stream is called an “iterator” because it iterates over the data structure.

In Java, the interface for a stream is called java.util.Enumeraton
public interface Enumeration() {

/**

* Indicates whether the stream has more data available or not.

* @return true if more data available, false otherwise.

*/

boolean hasMoreElements() ;

/**

* Returns the next data element, if available.

* Throws an exception if called when there are no more data elements available.

* @ return The next data element in the stream

*’/

Object nextElement() throws NoSuchElementException;

}

(Note: Technically, in the latest versions of Java, Enumeration has been superceded by the interface, Iterator, which adds the feature of allowing safe removal of data elements during the iteration. However the extra complexity of Iterator is more than we wish to deal with in this exam, so we will use the older Enumeration interface.)
You are to write an IVisitor to a BiTree called BRSLazyEnumerator that will return an Enumeration that will iterate through data elements in the tree.

The problem here is remembering where you are in the middle of the traversal between calls to the Enumeration’s nextElement() method. But this is a very similar problem to that in which we encountered with doing a breadth-first traversal. There, we used a restricted access container (RAC), to remember what items we needed to process. Iterating through a tree is essentially a lazy traversal through the tree. Thus, the code here can be a simple adaptation of the RAC-based traversal algorithm where the biggest difference is that the recursive call to continue processing the tree in the original traversal code has been eliminated and the traversal is instead performed by successive calls to nextElement().
One other difference between this algorithm and the original RAC-based tree traversal code is that saving empty trees in the RAC makes for complicated code to check if there are any more non-empty trees left in the RAC when either performing an hasMoreElements() check or processing nextElement(). So here, we want to put in the additional step of adding a child tree to the RAC only if it is non-empty.

The specifications for BRSLazyEnumerator are as follows:

a. The input parameter is an IRAContainer.

b. An empty tree should return an Enumeration whose methods do the following:

i. hasMoreElements() returns false always.

ii. nextElement() throws a NoSuchElementException always.

c. A non-empty tree should return an Enumeration whose methods do the following:

i. hasMoreElements() returns true if there are more data elements to process, false otherwise.

ii. nextElement() throws a NoSuchElementException if there are no more data elements to process. Otherwise, returns the next data element and positions the iterator to return any remaining data elements when subsequent calls to this method are made.
d. Changing the supplied RAC from a queue to a stack should change to order of the returned data elements from a breadth-first order to a depth-first order.

Notes:
a. Note that BRSLazyEnumerator is not recursive. It simply returns a Enumeration instance.

b. BRSLazyEnumerator should simply initialize the RAC, prepare any necessary invariant (w.r.t. the iterator) values and helper algorithms and instantiate the Enumeration iterator instance.
c. The test code assumes that the right subtree is processed before the left subtree. If your tests fail, check to test results to see if you simply need to change the order in which the subtrees are processed.

d. Think in terms of delegation!

The stub and test code can be found in the treeTraverse subdirectory of the exam download.
Please insert your code for BRSLazyEnumerator.java below:

3) (35 pts total) Solving a Maze.

Consider the a maze consisting of identical rooms all with 4 exits, labeled “North”, “East”, “South” and “West”. Each exit is one-way, that is, you may leave through an exit to another room but there may not be a direct way back to where you came from.

[image: image6]
The computer science fancy words for this type of maze is “directed graph” where the rooms are called “vertices” and the arrows connecting the rooms, designating the one-way exits, are called “edges”.
Here, one room is marked “End” and, initially, all the other rooms are marked “Unseen”. Our goal is to start at some given room and to traverse the maze (graph) until we find the room marked “End”, if it is accessible from the room where we started.
Graphs and trees are very similar in that they both have a node (vertex) of some sort and each node (vertex) has directed references to other node (vertices). The big difference is that in a graph, there exists the possibility of loops. That means that normal tree traversal algorithms, if run on a graph, have the possibility of endlessly recurring if a loop is encountered.

There are two basic ways to traverse a graph:

a. Save every room (vertex) in some sort of data structure when it is encountered and then when entering a new room, check that storage to see if that room had already been seen. The code to print out a maze in the supplied MazeToString class utilizes this method.
b. “Mark” each room in some manner so that you can tell when revisiting a room, that you’ve already been there. This is the classic “drop a treasure in each room” technique of solving mazes in computer adventure games. This is the technique you will use in this problem.

To facilitate the marking of rooms, the rooms have been designed to hold data of the form IRoomData and all rooms have the ability to execute an IRoomAlgo visitor. As in all tree-like structures, rooms can be either empty or non-empty. IRoomData has the ability to execute an IRoomDataAlgo visitor and the IRoomData interface defines 3 concrete singleton host instances: SEEN, UNSEEN and END.
package maze;

public interface IRoom {

 public String getName();

 public <R,P> R execute(IRoomAlgo<R,P> algo, P... inps);

}

public interface IEmptyRoom extends IRoom {

}

public interface INERoom extends IRoom {

 public String getName();

 public IRoomData getData();

 public void setData(IRoomData data);

 public IRoom exitNorth();

 public IRoom exitEast();

 public IRoom exitSouth();

 public IRoom exitWest();

}

public interface IRoomAlgo<R, P> {

 public R emptyCase(IEmptyRoom host, P... inps);

 public R neCase(INERoom host, P... inps);

}

public interface IRoomData {

 public <R, P> R execute(IRoomDataAlgo<R,P> algo, P... inps);

 public static final IRoomData END = new IRoomData() {

 public <R, P> R execute(IRoomDataAlgo<R,P> algo, P... inps){

 return algo.endCase(this, inps);

 }

 public String toString() {

 return "End";

 }

 };

 public static final IRoomData UNSEEN = new IRoomData() {

 public <R, P> R execute(IRoomDataAlgo<R,P> algo, P... inps){

 return algo.unseenCase(this, inps);

 }

 public String toString() {

 return "Unseen";

 }

 };

 public static final IRoomData SEEN = new IRoomData() {

 public <R, P> R execute(IRoomDataAlgo<R,P> algo, P... inps){

 return algo.seenCase(this, inps);

 }

 public String toString() {

 return "Seen";

 }

 };

}

public interface IRoomDataAlgo<R,P> {

 public R endCase(IRoomData host, P... inps);

 public R unseenCase(IRoomData host, P... inps);

 public R seenCase(IRoomData host, P... inps);

}

The convention used above for the generic type parameters is that R refers to a return type and P refers to an input parameter type. Remember that even if your code does not use an input parameter, if the generic definition specifies one, you must still declare a type of an input parameter, say Object.

You are to write an IRoomAlgo called FindEnd that will return an IList<IRooms> that is a path, not necessarily the shortest path, in order, from the given initial host room to the end room, inclusive.
For instance, if FindEnd is executed on Room #6 above, the returned list could be (amongst other possibilities)

{Room #6, Room #2, Room #1, Room #5}.
If there is no route from a given room to the end room, an empty list should be returned.

a. Process Flow Modeling
The first thing we need to do is to get a handle on the algorithm we will use to process the maze. The big problem is that there are 4 possible paths out of any given room and the recursive result out any given exit may return an empty list if that path does not lead to the end room.

This means that our process depends on the following objects:

· The IRoom host, which may be empty or non-empty.

· The IRoomData in the room you are in, which may be Seen, Unseen, or End.
· The recursive result from every exit in the room, an IList<IRoom>, which may be empty or non-empty.

In the space below, in textual and/or graphical form, describe the delegation process you will use to find the end room and return the path to that room:

a. (15 pts) Write the code for FindEnd.

Notes:
· The definitions for any visitors running on the recursive result IList<IRoom> will have this form:
 MyAlgo implements IListAlgo<IRoom, IList<IRoom>, Object> {

 public IList<IRoom> emptyCase(INEList<? extends IRoom> resultHost, Object... nu){

 …

 }

 public IList<IRoom> nonEmptyCase(INEList<? extends IRoom> resultHost, Object... nu){

 …

 }

 }

That is, the algorithm works on a list of IRoom objects, returns an IList of IRooms and takes an Object as its input parameter (you may want to change the input parameter’s type to whatever suits your needs).

· Given that the result is a list of rooms in order from the start to the end, is it better to create a forward or reverse accumulation algorithm?

· If you find that you have multiple implementations of a particular visitor where one of the cases is always the same, consider defining an abstract class that defines just that invariant case. Now all you need to do in the rest of your code is to implement whatever variant cases the abstract class leaves out. This could greatly simplify your code.
· Since the visitors use generics to define their return types, the results of a visitor’s execution can be immediately used without casting and operations can be “chained” together, ala thing.execute(algo).execute(anotherAlgo). This can simplify your code quite a bit.

· The supplied test code uses a randomly generated maze, so it cannot automatically check if the algorithm works. The output is printed on the console and interactions panes, showing the maze before the FindEnd algorithm is run, the path that was returned and the maze after the FindEnd algorithm was run (tells you what rooms were traversed by FindEnd). Right clicking the console pane will enable you to clear it and thus show only the most recent test results.

· No if statements are needed at all for this solution!
The stub and test code can be found in the maxeSolve subdirectory of the exam download.
Please insert your code for FindEnd.java below:

Room #5

END

Room #1

UNSEEN

Room #2

UNSEEN

Room #3,

UNSEEN

Room #6 UNSEEN

Oct. 15, 2006
10 of 10

_1189800208.unknown

_1222381391.unknown

_1222381421.unknown

_1222381385.unknown

_1189799112.unknown

