Comp202 – Principles of Object Oriented Programming II
EXAM #2

Rice University - Instructors: Wong & Nguyen

NAME & ID#: _________________

Instructions
1. This is an open-notes, open-book, open-Internet exam.

2. You will not be penalized on trivial syntax errors, such as a missing parenthesis. Multiple errors or errors that lead to ambiguous code will have points deducted, however.

3. In all of the questions, feel free to write additional helper methods to get the job done.

4. The emphasis is on correctness of the code, not efficiency or on simply generating the right result.

5. You are free to use any code that was given to you in the lectures and labs.

Please write and sign the Rice Honor Pledge here:

	1.a
	1.b
	1.c
	1.d
	2.a
	2.b
	2.c
	3 (Extra)
	Total

	/10 pts
	/15+4 pts
	/15+1 pts
	/10 pts
	/10 pts
	/10 pts
	/30 pts
	/15 pts
	/100+20 pts

1. (50 pts + 5 pts extra total) Extended Visitors, re-done: Consider the extended visitor pattern used to balance the B-Trees (ITreeNAlgo). The implementation using a switch statement to differentiate between the cases is simple and works well for small numbers of cases where the state identifier is a number or a character. It is however, limited in a more general sense. In general, what we’d like is for the state identifier to be whatever we want (i.e. not just an integer) and to be able to handle an arbitrary number of cases associated with the arbitrary number of hosts. To accomplish this, let’s go back to basics:
· A “classic” visitor consists of a number of methods, one for each possible host.

· A visitor is accepted by a host and applied without semantic by the host, that is, the host does not know what the visitor does or how it does it.

· Each method of the visitor essentially has the same signature except for possibly some variations on the type of the host.

If we look at each method of the visitor in isolation, that is, suppose we consider a visitor with only one host and hence only one method, we see a marked similarity between a visitor and a command. In fact, consider the following assertion:
A visitor is a collection of semantically related commands.

Let’s run with this idea and see what it can do for us. If a visitor is a collection of commands, then let’s implement it as such. One thing to note, however, is that the commands that make up a visitor are not random—they are each associated with a particular host, “keyed” to a specific host as it were. We can see this clearly in our extended visitor: the method

Object caseAt(int i, TreeN host, Object param)
explicitly “keys” a particular case (a.k.a. method, a.k.a. command) with the state identifier, i. Thus the state identifier, i, and its associated command form a key-value pair, which can be stored by the visitor.

A hash table would be a wonderful solution here as it allows random key-value pairs to be stored and retrieved. The caseAt() method of such a visitor would simply use the state identifier, i, as a key to retrieve a command stored in a hash table and return the result of applying the command with the state, host and parameter arguments. Naturally, the command’s apply() method would have the same input and return values as caseAt(). In the event that the requested command is not available in the hash table, then a separately stored default command would be applied.
A. (10 pts) Hash table based visitor: Using the supplied stub code, complete the implementation of AHashTreeAlgo. Use the class java.util.HashMap for your implementation. Note that AHashTreeAlgo is an abstract class, but has no abstract methods. Think about why this is so. What must the constructor of any visitor derived from AHashTreeAlgo do?
--------------- Paste your code for AHashTreeAlgo below ---------------------------------

package treeNAlgo;

import treeN.*;

import java.util.*;

/**

 * An implementation of ITreeNAlgo that uses a hash table (hashmap) to

 * store commands associated with each possible case of the TreeN host.

 */

public abstract class AHashTreeAlgo implements ITreeNAlgo {

 /**

 * Public interface for TreeN algo commands to be stored in this visitor

 */

 public interface ITACmd {

 /*

 * Method to be invoked when this method is accessed.

 * @param i The state of the host, supplied by the host.

 * @param host The host TreeN

 * @param param An arbitrary input parameter

 * @return The return value of the visitor

 */

 public Object apply(int i, TreeN host, Object param);

 }

 // TODO: STUDENT TO ADD ANY NECESSARY FIELDS

 // Be sure to initialize any fields to viable values!

 private HashMap<Integer, ITACmd> _hashMap = new HashMap<Integer, ITACmd>();

 private ITACmd _defaultCmd = new ITACmd() {

 public Object apply(int i, TreeN host, Object param) {

 return null;

 }

 };

 /**

 * Sets the command for state i to the given command

 * @param i The state for which the command is to be associated

 * @param cmd The ITACmd to be set

 */

 public void setCmdAt(int i, ITACmd cmd) {

 // TODO: STUDENT TO ADD METHOD BODY

 _hashMap.put(i, cmd);

 }

 /**

 * Sets the default command of the visitor to the given command

 * @param defCmd The default command to be set

 */

 public void setDefaultCmd(ITACmd defCmd) {

 // TODO: STUDENT TO ADD METHOD BODY

 _defaultCmd = defCmd;

 }

 /**

 * Finds the stored command associated with state i and returns the

 * result of calling its apply method with the given input parameters.

 * If no corresponding command is found, then the default command is used.

 * @param The state of the host

 * @param host The host TreeN

 * @param param param an arbitrary input parameter to be used by the visitor.

 * @return The return value of the associated command's apply() method.

 */

 public Object caseAt(int i, TreeN host, Object param) {

 // TODO: STUDENT TO ADD METHOD BODY

 ITACmd cmd = _hashMap.get(i);

 if(cmd == null) return _defaultCmd.apply(i, host, param);

 else return cmd.apply(i, host, param);

 }

}

B. (15 pts + 4 pts extra) Equality test visitor: By extending AHashTreeAlgo, implement a visitor called EqualAlgo that will test if two TreeN’s are of the same structure and contain the same data. The test code is supplied.
Notes:
· To add the equivalent to a constructor to an anonymous inner class, use the “initializer block” syntax.
· Avoid instantiating objects in the middle of processing a tree unless necessary. Statically definable objects should be held in fields.

· Think delegation!

· 2 pts extra credit if your solution only contains a single for-loop!
· 2 pts extra credit if your solution only contains a single if statement!

--------------- Paste your code for EqualAlgo below -------------------------------------

package treeNAlgo;

import treeN.*;

/**

 * Tests if two TreeN's are equal, that is, they have the same structure and hold

 * the same data. Returns true if the trees are equal, false otherwise.

 */

public class EqualAlgo extends AHashTreeAlgo {

 // TODO: STUDENT TO ADD ANY NECESSARY FIELDS AND/OR METHODS

 private EqualAlgo() {

 // TODO: STUDENT TO FILL OUT CODE HERE

 setCmdAt(0, new ITACmd() {

 private AHashTreeAlgo emptyTest = new AHashTreeAlgo() {

 {

 setCmdAt(0, new ITACmd() {

 public Object apply(int i2, TreeN host2, Object nu) {

 return true;

 }});

 setDefaultCmd(new ITACmd() {

 public Object apply(int i2, TreeN host2, Object nu) {

 return false;

 }});

 }

 };

 public Object apply(int i1, TreeN host1, Object other) {

 return ((TreeN) other).execute(emptyTest, null);

 }

 });

 setDefaultCmd(new ITACmd() {

 public Object apply(final int i1, final TreeN host1, Object other) {

 return ((TreeN) other).execute(new AHashTreeAlgo(){

 {

 setCmdAt(0, new ITACmd() {

 public Object apply(int i2, TreeN host2, Object nu) {

 return false;

 }

 });

 setDefaultCmd(new ITACmd() {

 public Object apply(int i2, TreeN host2, Object nu) {

 if(i1 != i2) return false;

 boolean result = true;

 for(int i = 0; (i < i1) && result; i++) {

 result &= host1.getDat(i).equals(host2.getDat(i))

 && (Boolean) host1.getChild(i+1).execute(EqualAlgo.this,
 host2.getChild(i+1));

 }

 result &= (Boolean) host1.getChild(i1).execute(EqualAlgo.this,
 host2.getChild(i1));

 return result;

 }

 });

 }

 }, null);

 }

 });

 }

 // Singleton pattern

 public static final EqualAlgo Singleton = new EqualAlgo();

}

C. (15 pts + 1 pt extra) Hash table based insertion: Re-implement InsertNAlgo as an extension of AHashTreeAlgo. Use the skeleton code in the supplied InsertNAlgo2 class. Does the algorithm itself need to be modified?
Notes:

· To add the equivalent to a constructor to an anonymous inner class, use the “initializer block” syntax.

· To access an anonymous inner class from another anonymous inner class it contains, use the “me = this” trick.

· 1 pt extra credit if InsertNAlgo2 contains no fields (inner classes may, however).

--------------- Paste your code for InsertNAlgo2 below --------------------------------

package treeNAlgo;

import treeN.*;

/**

 * InsertNAlgo - inserts the supplied parameter (key) into a TreeN

 * preserving balance with a maximum number of elements per node.

 * @dependency treeNAlgo.ILambda instantiates

 */

public class InsertNAlgo2 extends AHashTreeAlgo {

 // TODO: STUDENT TO ADD ANY NECESSARY FIELDS AND/OR METHODS

 /**

 *

 * @param order -- the max possible number of elements in a node

 */

 public InsertNAlgo2(final int order) {

 // TODO: STUDENT TO FILL IN CODE HERE

 setDefaultCmd(new ITACmd() {

 private SplitUpAndApply splitUpAndSplice = new SplitUpAndApply(order);

 public Object apply(int i, final TreeN host, final Object key) {

 host.execute(new AHashTreeAlgo(){

 private AHashTreeAlgo help = this;

 {

 setDefaultCmd(new ITACmd() {

 public Object apply(int s_help, final TreeN h, Object cmd) {

 final int[] x={0}; // trick to get past restrictions on final

 // x[0] is the index of insertion location.

 for(; x[0] < s_help; x[0]++) {// find insertion location

 int d = h.getDat(x[0]).intValue();

 if (d >= ((Integer)key).intValue()) {

 if (d == ((Integer)key).intValue())

 return h; // no duplicate keys allowed

 else break;

 }

 }

 h.getChild(x[0]).execute(help, new ILambda() {

 /**

 * @param child a TreeN subtree of h.

 */

 public Object apply(Object child){

 // splice child tree into parent

 return h.spliceAt(x[0],

 (TreeN) child);

 }

 });

 // split up host if necessary

 return h.execute(splitUpAndSplice, cmd);

 }

 });

 setCmdAt(0, new ITACmd() {

 public Object apply(int s_help, final TreeN h, Object cmd) {

 /**

 * At this point the host is an empty subtree of some parent

 * tree. Because the parent tree is balanced, it must be a

 * leaf!

 */

 return ((ILambda)cmd).apply(new TreeN((Integer)key)); }

 });

 }

 }, new ILambda() {// say something meaningful here

 /**

 * @param child not used.

 */

 public Object apply(Object child){

 return host; //no-op for this one

 }

 });

 return host;

 }

 });

 setCmdAt(0, new ITACmd() {

 public Object apply(int i, TreeN host, Object key) {

 return host.spliceAt(0, new TreeN((Integer) key));

 }

 });

 }

}

D. (10 pts) Traversing a TreeN: Using whatever implementation of ITreeNAlgo you desire, write a visitor called InOrderAlgo that will perform a right-to-left (= higher index to lower index) in-order traversal of a TreeN.
Notes:

· The tree should be processed in strict reverse in-order traversal, that is, for a tree in state s, child(s) is processed first, then dat(s-1), then child(s-1), then dat(s-2), etc. down finally to child(0).
· The constructor of InOrderAlgo will take an fp.ILambda (not the potential name conflict with treeNAlgo.ILambda) and use it as the inductive function in the processing.
· The ILambda used accepts the current datum to process for params[0] and the recursive result for params[1].
· The input parameter to InOrderAlgo is the base case value, which is returned by an empty tree.
· In the test code, fp.ConsLRS is used to “flatten” the tree into an ordered LRStruct of integers. fp.Sum is used to sum all the elements in the tree.
· Hints:
· Which way should your loops run?
· At least how many child trees are there when you are looping?
· If you have an extra child tree, when do you process it?
· How do you accumulate a result using a loop?
· What is the call to the right-most child tree?
--------------- Paste your code for InOrderAlgo below ---------------------------------

package treeNAlgo;

import treeN.*;

import lrs.*;

public class InOrderAlgo extends AHashTreeAlgo {

 // TODO: STUDENT TO ADD ANY NECESSARY FIELDS AND/OR METHODS

 /**

 * Note that the fully qualified name, fp.ILambda, is used to avoid

 * a name conflict with treeNAlgo.ILambda.

 */

 public InOrderAlgo(final fp.ILambda inductFunc) {

 // TODO: STUDENT TO FILL OUT CODE HERE

 setCmdAt(0, new ITACmd() {

 public Object apply(int i, TreeN host, Object base) {

 return base;

 }

 });

 setDefaultCmd(new ITACmd() {

 public Object apply(final int i, final TreeN host, Object base) {

 Object result = host.getChild(i).execute(InOrderAlgo.this, base);

 for(int j=i-1;j>=0;j--) {

 result = host.getChild(j).execute(InOrderAlgo.this,
inductFunc.apply(host.getDat(j), result));

 }

 return result;

 }

 });

 }

}

2. (50 pts total) Parsing Scheme Arithmetic Expressions
You are to write parts of a recursive descent parser to parse scheme-like arithmetic expressions in pre-fix format, such as (* 3 (+ 4 5)). We shall restrict ourselves to arithmetic expressions containing numbers, strings (representing variables), and binary operations such as addition and multiplication. The syntax of the Scheme-like arithmetic expression can be expressed as an LL(1) grammar with the following rules.
E ::= Leaf | BinOp
Leaf ::= VarLeaf | NumLeaf
VarLeaf ::= id
NumLeaf ::= num
BinOp ::= (Ops
Ops ::= Add | Mul
Add ::= + E E)
Mul ::= * E E)
Grammar Object Model and the Visitor Factories

Though the above LL(1) grammar is completely different from the one given in lab #10, the design and implementation of the tokens and their corresponding visitors remain the same! For reference, the code for the tokens, their visitors and their tokenizer have been provided.
A. (10 pts) Design an appropriate object model for the above LL(1) grammar (write the code for the appropriate classes or show the UML class diagrams with all the methods and fields). Put your classes in the “scheme” package (an empty directory is provided).
--------------- Paste your code or UML class diagram below ------------------------------------

[image: image1.png]

B. (10 pts) Design the corresponding object model for the factories of token visitors that will parse the grammar (write the stub code for the appropriate classes or show the UML class diagrams with all the methods and fields; the methods need not have working code). Put your code in the “parser” package.
--------------- Paste your code or UML class diagram below ------------------------------------

[image: image2.png]

C. (30 pts total) Write the code for

· (10 pts) the factory that parses E

--------------- Paste your code below ------------------------------------
package parser;
import tokens.*;

public class EFac extends ATVFactory {

 private LeafFac _leafFac;

 private BinOpFac _binOpFac;

 /**
 * @param _leafFac
 * @param _binOpFac
 */

 public EFac(ITokenizer tkz, LeafFac _leafFac, BinOpFac _binOpFac) {

 super(tkz);

 this._leafFac = _leafFac;

 this._binOpFac = _binOpFac;

 }

 /**

 * @return token visitor to parse E

 */

 public ITokVisitor makeVisitor() {

 return _leafFac.makeChainedVisitor(_binOpFac.makeVisitor());

 }

 /**

 * Make a token visitor that delegates to the given visitor in a chain of responsibility.

 * *

 * @param successor visitor to serve as successor in the chain

 * @return token visitor to parse E

 */

 public ITokVisitor makeChainedVisitor(ITokVisitor successor) {

 return _leafFac.makeChainedVisitor(_binOpFac.makeChainedVisitor(successor));

 }

}

· (10 pts) the factory that parses Leaf

--------------- Paste your code below ------------------------------------
package parser;

import tokens.*;

public class LeafFac extends ATVFactory {

 private VarLeafFac _varLeafFac;

 private NumLeafFac _numLeafFac;

 /**

 * @param _varLeafFac

 * @param _numLeafFac

 */

 public LeafFac(ITokenizer tkz, VarLeafFac _varLeafFac, NumLeafFac _numLeafFac) {

 super(tkz);

 this._varLeafFac = _varLeafFac;

 this._numLeafFac = _numLeafFac;

 }

 /**

 * Make a token visitor.

 * *

 * @return token visitor

 */

 public ITokVisitor makeVisitor() {

 return _varLeafFac.makeChainedVisitor(_numLeafFac.makeVisitor());

 }

 /**

 * Make a token visitor that delegates to the given visitor in a chain of responsibility.

 * *

 * @param successor visitor to serve as successor in the chain

 * @return

 */

 public ITokVisitor makeChainedVisitor(ITokVisitor successor) {

 return _varLeafFac.makeChainedVisitor(_numLeafFac.makeChainedVisitor(successor));

 }

}

· (10 pts) the factory that parses BinOp

--------------- Paste your code below ------------------------------------

package parser;

import tokens.*;

import scheme.*;

public class BinOpFac extends ATVFactory {

 private OpsFac _opsFac;

 /**

 * Visitor for E grammar non-terminals.

 */

 private ITokVisitor _parseOp;

 /**

 * Initializer lambda for this factory.

 */

 private ILambda _initializer = new ILambda() {

 public Object apply(Object nu) {

 _initializer = NoOpLambda.Singleton;

 _parseOp = _opsFac.makeVisitor();

 return null;

 }

 };

 /**

 * @param _opsFac

 */

 public BinOpFac(ITokenizer tkz, OpsFac _opsFac) {

 super(tkz);

 this._opsFac = _opsFac;

 }

 /**

 * Make a token visitor.

 * @return token visitor

 */

 public ITokVisitor makeVisitor() {

 initialize();

 return new LeftPToken.ILeftPVisitor() {

 public Object leftPCase(LeftPToken host, Object inp) {

 return new BinOp(host, (IOps)nextToken().execute(_parseOp, inp));

 }

 public Object defaultCase(AToken host, Object nu) {

 throw new IllegalArgumentException("Wrong token: expect '(' but get '" + host + "'");

 }

 };

 }

 /**

 * Make a token visitor that delegates to the given visitor in a chain of responsibility.

 * @param successor visitor to serve as successor in the chain

 * @return

 */

 public ITokVisitor makeChainedVisitor(ITokVisitor successor) {

 initialize();

 return new LeftPToken.AChainVis(successor) {

 public Object leftPCase(LeftPToken host, Object inp) {

 return new BinOp(host, (IOps)nextToken().execute(_parseOp, inp));

 }

 };

 }

 /**

 * Make the visitor.

 */

 private void initialize() { _initializer.apply(null); }

}

(15 pts extra) Extra credit problem: If you attempt this problem, you may take an additional 45 minutes after completing the rest of the exam (i.e. in addition to the time limit on the rest of the exam). You may not start this problem until you have completed the rest of the exam.
In the TreeN system, all intrinsic operations on the tree are structural operations. An operation that is missing is the “void setDatAt(int i, int x)” operation, which set the i’th data element to the value of x. Write a visitor called SetDataAt that performs this operation. The test code is provided.
Notes:

A. For convenience sake, the constructor of the visitor will take the “target” index, i, above. Only the data to set will be passed as the input parameter.

B. Attempting to set a data element whose index is greater or equal to the state value should throw an IllegalArgumentException. This applies to the empty tree as well. If the visitor is trying to set element t in a tree in state s, the exception message should be: “Cannot set data element t of a host tree in state s!” See the test code for examples.
C. You only need to replicate the net effect of setting the i’th data element—you may mutate the host and child trees so long as, in the end, they end up with the same data elements as they started, except obviously, for the one that was set by your visitor. You may even change the child tree objects being referenced so long as they end up holding the same data elements. You may not change the reference to the original host however.

D. Hint: Think in terms of split and splice pairs. Create a very methodical process that does one change at a time.
E. You may use any implementation of the visitor that you desire.

--------------- Paste your code for SetDataAt below ------------------------------------

package treeNAlgo;

import treeN.*;

public class SetDatAt extends AHashTreeAlgo {

 public SetDatAt(final int target) {

 setDefaultCmd(new ITACmd() {

 public Object apply(int i, TreeN host, final Object val) {

 if(target >= i) throw new IllegalArgumentException("Cannot set data element "+target
+" of a host tree in state "+i+"!");

 TreeN left = host.getChild(target);

 final TreeN right = host.getChild(1+target);

 TreeN newTree = (TreeN) left.execute(new AHashTreeAlgo(){

 {

 setDefaultCmd(new ITACmd() {

 public Object apply(int i, final TreeN leftHost, final Object tree) {

 leftHost.spliceAt(i, new TreeN((Integer) val));

 leftHost.splitUpAt(i);

 leftHost.spliceAt(1,right);

 leftHost.splitUpAt(0);

 return leftHost;

 }

 });

 }}, null);

 host.splitDownAt(target);

 host.spliceAt(target, newTree);

 return host;

 }

 });

 }

}

Nov. 4, 2004
12 of 14

