Comp202 – Principles of Object Oriented Programming II
EXAM #2

Rice University - Instructor: Wong

NAME & ID#: ___ANSWER KEY_____________

Instructions
1. This is an open-notes, open-book, open-Internet exam.

2. You have 5 hours to complete this exam.

3. You will not be penalized on trivial syntax errors, such as a missing parenthesis. Multiple errors or errors that lead to ambiguous code will have points deducted, however.

4. In all of the questions, feel free to write additional helper methods to get the job done.

5. The emphasis is on correctness of the code, not efficiency or on simply generating the right result.

6. You are free to use any code that was given to you in the lectures and labs.

7. Zip up and upload the entire exam directory to the Owlspace drop-off site.

8. Bring a signed hardcopy of this file to class on Monday, Nov. 20, 2006.

Please write and sign the Rice Honor Pledge here:

	1a
	1b
	2a
	2b
	2c
	2d
	3
	Total

	/5 pts
	/20 pts
	/10 pts
	/5 pts
	/15 pts
	/20 pts
	/25 pts
	/100 pts

1. (25 pts. total) Hashing: One of the important uses of hashing is in the area of data security both in terms of encrypting data and in terms of insuring data integrity. For instance, how would one insure that a data transmitted from one point to another arrives intact and unaltered? Here, the issues of reliable data transmission and of preventing tampering of the data are the same.
One of the many ways to check if the data received is the same as (or, more correctly, most likely the same as) that was transmitted is to create a short “digest” of the data. A digest is an additional, but much smaller, set of data that is generated from the original data and sent along with it to the receiver. The idea is that by comparing the received data and the received digest, the receiver could tell if the data was corrupted during the transmission.
In order for the receiver to have a maximally high probability of detecting any data corruption, the digest must be created using an algorithm with the following properties (why?):
a) Identical sets of data must create identical digests.

b) A small change in the data must create a large change in the digest.

One of the most common digests in use today is the MD5 Hash Function (http://en.wikipedia.org/wiki/MD5). The MD5 hash is far too complicated for us to try to recreate here, so you will instead attempt something much simpler.
· We will represent our data as an array of ints where we have limited the maximum value to less than ±256. This is equivalent to a byte of data but being an int makes it easier for us to work with.
· Our digest will thus also be an array of ints with the same limitation of maximum values of ±256.

· For out tests, our data array will be at least 256 elements long, but our digest array will only be 8 elements long.

To test that the digest values are spread out as much as possible, we will use some crude statistical tools: the average and standard deviation. The idea here is to consider an N-element digest as a point in an N-dimensional space, where N is, for instance, 8. Thus the digest can be modeled as an N-dimensional “vector”. Thus, imagine a given a set of digest “vectors” generated from various data sets, as being points spread through an N-dimensional space where the vectors point from the origin to each of those points.
We can then calculate an “average” vector which the “center of mass” of all the digest points. The standard deviation, which is the average distance (in N-dimensions) of the digest points from the average point, can also be calculated. This is a measure of how spread out the digest points are in the space.

A) (5 pts): In the space below, write down your response to the following questions:
· Given a large set of digest vector/points generated from sets of data that are all different but not necessarily randomly distributed, what do you expect for the value of the average digest?
· With respect to the maximum value of any element (e.g. 256), what do you expect the standard deviation to be, e.g. zero, much smaller, about the same size (within a factor of 2 or so), or much larger than the maximum value of an element?
Assume a “perfect” algorithm (please define whatever that means to you) for generating the digests. Justify your answers!
The average digest should always be a vector of all zeros because a “perfect” digest algorithm would spread the digest vector evenly over the entire vector space, even for small perturbations of the data set.
The standard deviation should be on the order of the maximum size of an element because if the digest vectors are evenly spread throughout the entire vector space, this would give a standard deviation on the order of the size of the space.
B) (20 pts): You are to complete the makeDigest method in the class DigestFactory with your own implementation of an algorithm to generate a digest array from the given data array. Unit tests are supplied. In the tests, the RandomErrorGenerator class is used to change a single element in the data array by ±1. This simulates a small error in transmission of the data. The unit tests then test the following:

· test_digest: Identical data sets should generate identical digests. Different data sets should generate different digests. With a 50% probability, errors will be generated in the data and the generated digests checked against the digest of the original unaltered data. This test also checks if all the elements in a digest are less than the specified maximum (256) in absolute value.
· test_std_dev : The standard deviation of multiple data sets (200) with single element errors (probability of error = 100%) is less than 100.

· test_avg: Production-quality algorithms are beyond the scope of this exam, so a relaxed criterion is used here. The length of the average digest vector from a series of fully random data sets (1000 sets) is calculated and must be less than 50.

In order to receive full credit, your code must pass all unit tests.
Notes:

· In order for the same data to create the same digest, your algorithm must be entirely deterministic, that is, it cannot use any values that are randomly generated during the execution of the algorithm.

· You may use the Internet to obtain any special numerical values you might need.

· The unit tests will run faster if you comment out the print statements, but then you may not see some potentially useful debugging information. There are print statements that have already been commented out that you may want to uncomment.

· You may create whatever private fields and methods you need to support your algorithm.

· The modulo operator (%) is a handy way of restricting the size of a value.

· Since the unit tests change just a single data element, if only a single element in digest changes as a result, the digest vector doesn’t “move” very much in response to the change in the data. Can you think of a way to make more than one element of the digest be affected by a single element change in the data?

There is no one answer to this problem! Use your imagination! (
 Please insert your code for DigestFactory.java below:

See the solution code for an example. The key is to affect as many elements of the digest as possible for any given change in the data set.

(50 pts total) Parsing: In Lab 10 (http://www.owlnet.rice.edu/~comp202/06-fall/labs/lab10/) we figured out how to parse a simple grammar using an implementation of visitors that used the “Chain of Responsibility” design pattern. Now we will attempt an implementation that uses the extended visitor pattern used in our self-balancing trees (http://www.owlnet.rice.edu/~comp202/06-fall/lectures/lec19/). Instead of using switch statements, the visitors we will use here employ an internal dictionary that holds command objects keyed to the index value supplied to the caseAt method.

Please see the code for the classes, IGenVisitor, IGenVisitorHost, AGenVisitor and ATokVisitor.
IGenVisitor describes a generic extended visitor. IGenVisitorHost describes a host that can accept a generic extended visitor. AGenVisitor is an implementation that internally uses a dictionary (Hashtable) to hold commands (AGenVisitor.IGenVisitorCmd) that can be retrieved using the index value given to it’s caseAt method. The caseAt method takes the given index value and uses it to retrieve the corresponding command from the hash table and then applies the command with the given host and input parameters. The return result of the command is the return value of caseAt. addCmd can be used to add new commands associated with a given key value. We will be using Strings as the index (key) value type. (Note: The ingenious generic typing scheme where the visitor host is typed to with the type of the host its own visitor expects is what allows a single implementation of the visitor to be used in multiple applications. This technique was invented less than 2 months ago by Rice CS senior, Tim Bussmann as part of our Sky.NET project.)

AGenVisitor supports two very important new features:

· A “copy constructor”, which is a constructor that takes in another AGenVisitor as an input and instantiates a new visitor with all the same commands already loaded into it. This is very useful for making copies of a visitor for further modification without having to know what commands are already installed in that visitor.

· A map method that maps a lambda (AGenVisitor.IMapLambda) across all the commands stored in the visitor except the default command (because access to it is invariant). The lambda is required to return a command object that replaces the currently processed command object. Note that the input command can be returned for no net effect on the visitor. This makes the map method very useful for either copying all the commands from a visitor or for modifying every command, without ever needing to know what commands were installed.
We will be creating anonymous inner class implementations of the ATokVisitor, which is simply an AGenVisitor with a pre-defined default case (unknown token error case). ATokVisitor supports AGenVisitor’s copy constructor and map as well as all the other inherited methods.
The tokens, NumToken, IdToken, PlusToken, and EOFToken all implement the IGenVisitorHost interface via the AToken class.
The tokens of the grammar (E, E1, E1a, Empty, F, F1, and F2) are all now sub-classes of the generalized IGrammarToken interface. The visitors we will create will be defined (via their generic type parameters) to return IGrammarTokens.

To save time and heartbreak, please use the following code templates when creating new visitors or commands:

To create a new, plain visitor (that returns an IGrammarToken and takes an Object as it’s input parameter):
new ATokVisitor<IGrammarToken, Object>() {

 {
 // Initialization block. Put code to install commands, etc. here.

 }

}

Note that you don’t need to override caseAt because that method is already 100% invariant code defined in AGenVisitor.

To create a new visitor (that returns an IGrammarToken and takes an Object as it’s input parameter) with the same commands as another visitor, called anotherVisitor here:

new ATokVisitor<IGrammarToken, Object>(anotherVisitor) {

 {
 // Initialization block. Put code to install commands, etc. here.
 // This eliminates the need for a second line of code to install cmds

 // and the visitor can be used/returned immediately.

 }

}

To instantiate a command (that returns an IGrammarToken, is indexed by a String, takes Objects as input parameters and has an AToken as a host) for installation into a visitor:

new AGenVisitor.IGenVisitorCmd<IGrammarToken, String, Object, AToken>() {

 public IGrammarToken apply(String idx, AToken host, Object... inps) {

 // Method body goes here
 // Always an IGrammarToken object;

 }
}

To instantiate a new lambda (that takes Strings indices and the above commands) for mapping:

new AGenVisitor.IMapLambda<String, AGenVisitor.IGenVisitorCmd<IGrammarToken, String, Object, AToken>>() {

 public AGenVisitor.IGenVisitorCmd<IGrammarToken, String, Object, AToken> apply(String idx, final

 AGenVisitor.IGenVisitorCmd<IGrammarToken, String, Object, AToken> cmd) {

 // Method body goes here

 // return cmd; //for no net change
 }
}

The lambda is passed the index value and corresponding command for every index/command pair saved in the visitor’s internal dictionary (hash table). The lambda is required to return a command that will replace the given one in the host visitor. For no net change, simply return the given cmd reference, e.g. when simply copying commands to another visitor.
The net effect of the new visitors is to completely eliminate all the token-specific visitor classes used in the Chain-of-Responsibility implementation. The makeVisitor() and makeChainedVisitor(successor) methods of the token factories still remain however, because the need to make visitors for the combined and uncombined token grammar situations is independent of the implementation of the visitors.

Ask yourself this question: Given that the net effect of parsing the grammar is independent of the implementation of the visitors used to parse it, is there really going to be any difference in the “operational” code contained in either the body of the commands here or the method bodies of the token-specific visitors we did before?
For reference, please see the solution to Lab 10!

Fundamentally, to create a visitor for various purposes, here’s an overview of what needs to be done:

· Terminal situations: The associated command in the visitor simply instantiates and returns the appropriate grammar token.

· Combination situations: Since an LL(1) grammar insures us that any given token can only be processed in one way, the visitor to process a combination (this or that token possible) is simply one that has multiple commands installed into it. Think of this as the chain of responsibility having been flattened into a single visitor.
· Sequence situations: (this then that token) A single command is associated with the first tokenizer token in the sequence. But a sequence is made of grammar tokens, not tokenizer tokens. In that command, the first grammar token is processed, then the second. The problem is when the first grammar token may be a combination of many tokenizer tokens. That means that the parsing visitor for the first grammar token in the sequence may contain multiple commands. In this situation, every existing command, each of which corresponds to a single tokenizer token, needs to replaced with a command that executes the previous command first on the host token (it’s ok because the visitor has already guaranteed that you have the right host for the command), then the second token’s visitor on the next token from the tokenizer (because you don’t know what that token is).
You are to complete the code in the makeVisitor() and makeChainedVisitor() methods of the F1Fact, F2Fact, E1Fact, FFact, E1aFact and EFact classes. EmptyFact has been completed for you as an example.
A) (10 pts) F1Fact and F2Fact terminal token classes
· In these situations, the associated command must simply return a new token of the appropriate type (F1 or F2). Note that the host of the command is of type AToken, but can be safely downcast to the required type.

· The index values to use are Strings with the values “Num” and “Id”.
· For makeVisitor() simply return a new ATokVisitor with the proper command installed.

· For makeChainedVisitor() you want to install your command into a copy of the successor (use the copy constructor of ATokVisitor). Then return the copy.
B) (5 pts) E1Fact and FFact combinations
· In these situations, you simply need to combine the commands of the two visitors for the two parts of the combination.
· In general, the makeChainedVisitor() method of a factory does this combining of commands for you.
· Remember that the makeVisitor() method of a factory makes an uncombined visitor.

· So, what’s the difference between this generalized visitor implementation and the chain-of-responsibility implementation?

0
C) (15 pts) E1aFact simple sequence
· This is a “degenerate” case of a sequence where we know that there is only one possibility for the first token, namely that it is a PlusToken. This makes life a lot easier.
· For makeVisitor() simply return a new ATokVisitor with a command that returns a new E1a grammar token constructed from the host (a PlusToken) and the parsing of the next token from the tokenizer.

· For makeChainedVisitor() simply return the same command as above installed into a copy of the successor.
D) (20 pts) EFact general sequence
· Life gets a little trickier now because we are not assured how many commands exist in the F parsing visitor.
· For makeVisitor() you need to decorate every command in a copy of the first token’s parser (_parseF). This decorating command should return an E object constructed from a delegation to the pre-existing command, which returns an F object, and the returned E1 object from the execution of the _parsE1 visitor on the next token from the tokenizer.
· To decorate every existing command without knowing what they are, use the map() method of the visitor. Remember that the return value of the IMapLambda.apply() is the command you want to re-install.

· For makeChainedVisitor() you want to add all the commands from the successor to a decorated visitor as was made in makeVisitor(). Use map() here again to copy the commands out of successor and into your returned visitor. Don’t forget to return the original command in IMapLambda.apply()so that it doesn’t corrupt the successor visitor.

You are expected to create private helper methods, etc. to minimize any duplicated code.

Please attach your code for the above files to this exam.
See the solution code.
(25 pts total) Designing Software for a Robot.

I have a IntelliBrain-Bot robot from RidgeSoft (http://www.ridgesoft.com) that runs along the floor using two motors to drive its wheels. These are DC motors that one can simple turn off or on at a specified speed. So, to go forward, you set each motor to go forward at the same speed. To turn to the right, you set the left motor to a certain speed and the right motor to the same speed but in the reverse direction. This will cause the robot to spin on the floor in a clockwise manner. Turning to the left is the exact opposite.

The robot also has an infrared sensor and circuitry to detect and decode the signals that come from a TV remote (specifically a Sony TV remote). When a button is pressed on the remote, a integer value number can be retrieved from a special class provided along with all the other classes to run the robot.

You are to design a basic system, that is just the core classes, that will enable me the robot to

· Perform various different simple actions when different buttons are pressed on the motor, e.g. go forward, go backward, turn (spin) right, turn (spin) left, stop, etc.

· Perform complex behaviors made from combinations of the above simple actions. These complex actions would be accessible by pressing a key on the remote as in any other action.
· Be able to dynamically create new complex behaviors while the robot is already running.

This is a design problem. You do not have to create operational code. A DrJava project has been provided so you can write out the classes you need but you can simply put comments in the method bodies explaining what that method would do in terms of any specific implementation algorithms you had in mind.

The motors are represented by the com.ridgesoft.robotics.Motor interface which provides methods to set the power of the motor to make it turn forward or backwards (correctly compensated already for the left vs. right motors) and to stop the motor. Note that the motors are designed such that they keep running once they have a non-zero power setting until the power is reset to zero.

The remote control is represented by the com.ridgesoft.robotics.IrRemote interface that provides a method to read the int code received from the remote control. The robot.SonyRemoteCodes interface gives some example codes that are returned for various buttons. Feel free to make up more codes for more buttons as per your needs—the actual remote has lots and lots of buttons on it that can be used.

In case you need it, System.currentTimeMillis() returns the current time in milliseconds. Also, the following code can cause the system to pause for the number of milliseconds specified by interval:

try {

 Thread.sleep(interval);

}

catch (Throwable t) {

 t.printStackTrace();

}

You really don’t need to program up anything down to the above level, but I mention it just so you know that this sort of capability is available.

You do not need to show a design with tremendous specifics. Your job is to prove that your design, given the proper support infrastructure (e.g. startup/initialization, MVC code, etc) and detailed implementations of the variant components, your system would be able to perform all the above requirements.

Each class and method you create should be commented using Javadoc comments as to exactly what it is supposed to do in your design and how it helps achieve the above design specifications.

Below, create a UML diagram of your design. You may use your own UML diagramming tool, Microsoft Word’s drawing tools, or least preferably, a clear and legible hand-drawn diagram. Attach your Java code to the exam as well.
See the solution code.

Oct. 15, 2006
9 of 9

