Comp202 – Principles of Object Oriented Programming II  
EXAM #3
      

Rice University - Instructor: Wong

NAME & ID#: ______________________________


Instructions
1. This is an open-notes, open-book, open-Internet exam.

2. You have 6 hours to complete this exam.  READ THE QUESTIONS CAREFULLY AND COMPLETELY!
3. You will not be penalized on trivial syntax errors, such as a missing parenthesis.  Multiple errors or errors that lead to ambiguous code will have points deducted, however.

4. In all of the questions, feel free to write additional helper methods to get the job done.

5. The emphasis is on correctness of the code, not efficiency or on simply generating the right result.

6. You are free to use any code that was given to you in the lectures and labs.

7. Zip up and upload the entire exam directory to the Owlspace drop-off site.

8. Bring a signed hardcopy of this file to Dr. Wong’s office by 11:59 PM Wed, Dec. 20, 2006.  Slide it under the door or put it in his mailbox if no one is around.
Please write and sign the Rice Honor Pledge here:
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1)  (60 pts total)  Parsing – the very latest version!  
In the last exam, we figured out how to convert the parsing architecture from class to use extended visitors for parsing.   This casts the entire parsing process in a new light and opens many new possibilities.  

Note:  This problem constitutes unpublished research work that was just performed explicitly for this exam!  You have reached the forefront of OOP!  (
If one looks at the code for EFact and FFact (see the supplied code) we see that those two classes represent fairly generic versions of a binary sequence and a binary combination of tokens respectively.   That is, there is nothing really specific to the grammar that goes on in those classes.  Thus, with only slight modifications, we can create generic versions of any binary sequence or combination!  

In the supplied code, SequenceFact and CombinationFact are those generalizations.   The only difference between this code and the EFact and FFact is that the default case is more properly handled (i.e. is also decorated) in the sequences.   The combination code is unchanged.   These two factories can thus instantiate any possible non-terminal grammar tokens relating to sequences and combinations.
Turning our attention to the simple token factories, F1Fact and F2Fact we see that they are very similar, differing only in the name that is used to instantiate the terminal grammar token.   This invariant can thus be coded into a single class, SimpleFact. 

This only leaves the one, the only, empty token factory, which is fundamentally singular in nature.   I have duplicated the code of EmptyFact in MTFact so as to avoid conflicts between the old and new code.
Conclusion: With only 4 classes, all possible grammars can be represented!   The entire process of creating an object model of the grammar first has been eliminated.   The entire grammar class hierarchy and all but 4 classes of the associated factory hierarchy have vanished!!   

Before, the process of creating a parser involved designing and writing classes to represent the grammar tokens and their associated factories, but now, the entire process has been moved to run time.    That is, the necessary factories to create the parsing visitors can be entirely created by run time code, not at design time.   We have opened the door for the creation of automatic parser generators which only require the input of a grammar in text form.
There is one little remaining problem and that is the age-old problem of connecting objects together to form a loop.   Grammars that include recursive definitions (i.e. most grammars) will contain loops.   In the old system, the E1aFact class had a special constructor and special settor to enable it to be instantiated without its required EFact, which could be added later, after EFact had been instantiated.   This enabled the loop to be closed.   But when we are using the generic representations for sequence, combinations, etc, we cannot have such special constructors and settors because we don’t know when and where they will be used.   Putting the capability in every class is unsatisfactory because it forces every class to provide services that it may not need and that capability is also external to the grammar definition.      
The problem is that when creating a loop, at some point, a reference to a not-yet-instantiated object is needed.   So what we need is to provide a valid reference that one class can use but that later can be redirected to the finally instantiated object.    Encapsulation and indirection layers to the rescue!   We create a proxy class (Proxy Design Pattern: http://www.dofactory.com/patterns/PatternProxy.aspx) which is very similar to a Decorator design pattern.   The ProxyFact class simply holds a reference to another factory and delegates all calls to it.  When ProxyFact is instantiated, that reference is initially null.   To instantiate a factory class that needs a reference to another factory that has not yet been instantiated, simply give it a “proxy” instance of ProxyFact.  Later, after the required factory has been instantiated, simply use the settor method supplied by ProxyFact to set its internal reference to that desired factory and thus delegate its calls to it.   Voila!  Loop closed!   And no one is the wiser and no grammar classes need to have special constructors or settors.   All the loop-closing capabilities have been isolated into the single, simple ProxyFact class.
For convenience sake, a class that easily creates long, non-binary sequences has been written:   MultiSequenceFact.   This factory can make a parsing visitor for compound binary sequences of two or more grammar tokens.   It does so by chaining multiple instances of SequenceFactory.  That is, the following code creates exactly the same object instances for the following rule:
S ::= A B C D E

ITVFactory s = new SequenceFactory(“S1”, tok,

                                   AFact,

                                   new SequenceFact(“S2”, tok,

                                                    BFact,

                                                    new SequenceFact(“S3”, tok,
                                                                     CFact,

                                                                     new SequenceFact(“S4”, tok,

                                                                                       DFact,

                                                                                       EFact))));

ITVFactory s = new MultiSequenceFact(“S”, tok,

                                     AFact, BFact, CFact, DFact, EFact);

All MultiSequenceFact does is to automatically create the longer code of using the binary SequenceFact.   It also automatically creates the numbered names given to binary sequences.   Note that a sequence of 5 grammar tokens is made of only 4 binary sequences.
A) (10 pts)  Re-writing the old in terms of the new. 
The supplied code has a method that parses the original grammar from the last exam and class: RDPFrame.makeOrigParser() using the extended visitor design techniques from the last exam. 
You are to re-code the parsing of the original grammar in terms of the new generalized factory classes. Replace the original code to generate the ITVFactory to parse E with code using only SequenceFact (or MultiSequenceFact), CombinationFact, SimpleFact and MTFact.  
· The original grammar in Baukus-Naur Form (“BNF”) is given in the comments.

· The E1aFact is really a sequence of “+” then “E”. 
· Be sure that the empty terminal is always the second choice of any combination.   This is because of how the default case gets copied or decorated.

· Instead of instantiating a factory for E1a before it is needed, instead instantiate it as a part of the instantiation for E.  Since E1a requires an instance of E itself, give it an instance of ProxyFact (that your defined earlier) instead.   Then, in the next line of code, E will have been instantiated, so use the setFact() method of ProxyFact to set the proxy’s reference to the E factory.   
· Instantiate the proxy before instantiating the factory for E so that you can retain a reference to the proxy.

· The makeOrigParser() method assumes that the E factory instance is named eFact and will return it.

· Use MTFact for the empty token.

· The test files inp1.txt, inp2.txt, inp3.txt and input1.txt files contain valid grammar examples.

· The test files bad1.txt, bad2.txt and bad3.txt contain invalid grammar examples.
B) (15 pts)  Writing a new grammar without writing new classes: XML
One of the most common data transmission formats in use today is the eXtensible Markup Language, “XML”.   This modern “lingua franca” is used by everything from web services to music composition programs to almost all Microsoft Office products.  This character-based format uses “tags” to define composite data elements.  

XML tags have two basic forms:   the start tag, <A> and the end tag, </A>.  Here, A is the name of the tag.  The data associated with the tag is held between matching start and end tags.   This data may include multiple nested tags.  The following are all valid XML expressions (“tagged elements”):
<A></A> 

<A>data</A>

<A><B>data1</B><C>data2</C></A>

<A><B>data1</B><C><D>data3</D>data2</C></A>

The actual XML standard includes many features such as tag qualifiers and comments, but we will only consider a small subset of the official grammar here.  In Baukus-Naur Form (BNF), a simplified grammar for XML can be written as:

   TaggedElt ::= < Id > AXML </ Id > 

   AXML  ::=  NEXML | MT   

   NEXML ::=  AElement AXML 

   AElement ::=  Id | TaggedElt 

Here, the terminal tokens are <, >, </ and Id.   The tokenizer has been modified to recognize the multiple characters  “</” as a single token.   The pushback mechanism of the tokenizer has also been upgraded to handle multiple character tokens through a modified state-pattern design.
MT refers to the empty token.

The supplied code has a method whose job it is to parse an XML grammar from the input file: RDPFrame.makeXMLParser(). Write the code to generate an ITVFactory to parse the above XML grammar with code using only SequenceFact (or MultiSequenceFact), CombinationFact, SimpleFact and MTFact.  
· The makeXMLParser() method assumes that the code instantiates an ITVFactory called taggedElt that it will return.

· The code to instantiate the terminal token factories has been supplied already.

· Be sure that the empty terminal is always the second choice of any combination.   This is because of how the default case gets copied or decorated.

· Note that in the above grammar, there are two loops.  This means that you will need two variables that reference factories (rather than the only one variable that was needed in the previous problem) so that the proxies can be set properly.   You will thus also need two proxy instances.
· Valid grammar examples can be found in the files xml0.txt, xml1.txt, xml2.txt, xml3.txt, xml4.txt and xml5.txt.
· Invalid grammar examples can be found in the files badxml1.txt, badxml2.txt and badxml3.txt.

C) (25 pts)  Semantic checking of XML
If you attempt to parse the XML files incorrect_xml0.txt, incorrect_xml1.txt, incorrect_xml2.txt, or incorrect_xml3.txt, you will discover that they will all parse without error even though they are invalid because the ending tags do not match the start tags.   This is because the semantic constraint that requires that the start tag match its end tag is beyond the scope of the grammar to describe and enforce.  The grammar itself only specifies that there is an ending tag for every start tag and that the tags enclose Id tokens.
In order to enforce the semantic constraints, we need to post-process the parsed XML.  That is, we need to run an algorithm on the IGrammarToken tree that results from parsing the XML file.   To facilitate this, we have added visitor capability to the grammar tokens.   These visitors are extended visitors like the ATokens’ visitors.   There are only three types of IGrammarTokens:  SequenceToken, SimpleToken and MT.   There is no grammar token corresponding to a combination rule because a combination is always either one or the other of its choices, thus there is no need for a grammar token explicitly for the combination itself.
SequenceTokens always call the “Sequence” case of their visitors.   MT tokens always call the “MT” case of their visitors.   SimpleTokens always call the case of their visitors corresponding to the name the token was given, e.g. the “<” token will call the “<” case, the “</” token will call the “</” case, the Id token will call the “Id” case, etc.
You are to complete the CheckMatchingTagsAlgo visitor to check that an XML expression (TaggedElt) such all start and end tags match.   Matching tags means that the IGrammarTokens between the “<” or “</” grammar token and the “>” grammar token have the same toString() value.   (Note that the parser will guarantee that these tokens are SimpleTokens, so you don’t have to be concerned with that issue.)
If you were unable to complete parts A or B, a working class file, RDPFrame.class, has been provided so that you can proceed to this question.   Just copy this file to your classes directory before running the application.   Be careful about overwriting or deleting this file when compiling (just compile the CheckMatchingTagsAlgo file, not the whole project) or when clearing the build directory.

· The parser will guarantee that 
· The IGrammarToken that executes CheckMatchingTagsAlgo is grammatically correct, that is, that every start tag is matched with an end tag, though not necessarily contain the same Id value (= toString() value).   
· The parsed XML IGrammarToken has a form that matches the entire XML grammar.

· The initial host token (TaggedElt) is a chain of 6 SequenceTokens:  
[<, [Id, [>, [AXML, [</, [Id, >]]]]]]
where [A, B] is SequenceToken.
· AXML is a SequenceToken chain whose

· token1 of the first SequenceToken in the chain is either a base case SimpleToken (Id) or a recursive TaggedElt (which is a chain of SequenceTokens)
· token2 of the last SequenceToken in the chain is an MT token. 

· The abstract superclass ACheckTagsAlgo simply defines a visitor that returns a Boolean value, calls the cases using a String value, takes Objects as input parameters and whose host is an IGrammarToken.  It also provides a default case that returns a boolean true.   By using this as your superclass for any visitors you write, you don’t have to redefine all these specifications.

· A couple of utility algorithms have been provided for your convenience:
· CheckNthSequenceAlgo: This visitor makes it easier to process a chain of SequenceTokens.    It takes two parameters, the first is n, a zero-indexed count value and the second is an ACheckTagsAlgo visitor.   CheckNthSequenceAlgo will cause the n’th SequenceToken in the chain to execute the given ACheckTagsAlgo visitor where n =0 means that initial host token will execute the given visitor.   Remember that since a chain is a recursive data structure, executing CheckNthSequenceAlgo on a SequenceToken in the middle of the chain will cause it to count from that point onward, not from the start of the original chain.  Using CheckNthSequenceAlgo will save you from having to write tedious recursive algorithms to get to a particular point in a chain.
· ProcessListAlgo is a modified map algorithm that will run a given ACheckTagsAlgo on every IGrammarToken contained by a chain of SequenceTokens (i.e. the token1 of every SequenceToken plus the token2 of the very last SequenceToken in the chain).  ProcessListAlgo will return false if any of the applications of the given visitor returns false, or true only if they all return true.   ProcessListAlgo is very useful in processing AXML.
· CheckMatchingTagsAlgo should return true when executed by either an Id token or an MT token.   Think about this when processing your base cases.
· The check XML button on the GUI will run CheckMatchingTagsAlgo on the result of the parse XML button.   

· Syntax help:

· To anonymously instantiate an ACheckTagsAlgo, use the following syntax:

new ACheckTagsAlgo(){
    {

       // Add commands here in this initializer block.

    }

}

· To add a command to a visitor, use the following syntax:

    addCmd("index_value", new IGenVisitorCmd<Boolean, String, Object, IGrammarToken>() {

      public Boolean apply(String idx, IGrammarToken host, Object... inps) {
          // command body

      }

   });
where “index_value” is the String index value for the associated grammar token, e.g. “Sequence”,  “Id”, “MT”, “<”, “</”, etc. 

· The supplied test files, incorrect_xml0.txt, incorrect_xml1.txt, incorrect_xml2.txt,   all contain grammatically correct but semantically incorrect XML.  That is, they will parse correctly but running CheckMatchingTagsAlgo on the parsed result should return false. 
· Suggestions: 
· Progressively develop your algorithm to check the simplest cases first, then slowly modify it to handle more complex situations.  Consider the following possibilities, which all have supplied test files:
· <a></b> : xml0.txt should return true, but incorrect_xml0.txt will return false.
· <a>X</b> : xml1.txt should return true, but incorrect_xml1.txt will return false.

· <a><b>X</c></a> : xml2.txt should return true, but incorrect_xml2.txt will return false.

· <a><a1>X</a1><a2>Y</b></a> : xml3.txt should return true, but incorrect_xml3.txt will return false.

· Create more complex test case files.
· Save a copy of any working code at each stage so you can both return to it if necessary or to show me that you got that far.

· Create a process flow diagram to plan out your algorithm.  It’s very easy to get lost and lose track of what you are really trying to accomplish at any stage of the algorithm.

D) (10 pts)  One more thing!  Too many types of tokens from the tokenizer!  
This problem can be completed separately from parts B and C but must be done after part A.

If you look at code for the various tokens returned by Tokenizer3 (IdToken, PlusToken, NumToken, LeftBracketToken, RightBracketToken, ForwardSlashToken, LeftBracketForwardSlashToken, and EOFToken), you will see that they are all very, very similar.
You know what this means by now!  What’s the invariant?   Essentially, the “smarts” of an AToken is that it knows what case to call in its visitor.  But with the use of extended visitors, that’s just a matter of the value passed as the index to the caseAt() method.    That is, a specific subclass of AToken is really defined by just a value that it possesses!   This hardly seems to be grounds for creating a new class for every type of token.
So let’s get rid of all those unnecessary AToken subclasses!  

There’s only one little catch, and that’s that NumToken and IdToken are slightly different than the rest of the token classes.    In all the other classes, the case called on the visitor corresponds to the lexeme of the token.  However, in both of these classes, the case called on the visitor does not correspond to the lexeme.   For instance, in an IdToken, the lexeme is the characters that form the Id, e.g. “abc”, but the case called on the visitor is always the “Id” case.   Likewise for NumToken, the lexeme is the string representation of the numerical value, e.g. “42”, but the case called on the visitor is always the “Num” case.
This means that in general, there is a difference between the lexeme and the value used to call the visitor.   Let’s call the latter value the “name” of the token.  

We can thus define a general factory for ATokens, called ITokenFactory:

/**

 * Abstract factory to produce tokens

 */

public interface ITokenFactory {

  /**

   * Creates an instance of an AToken from the given name and lexeme values

   */

  public AToken makeToken(String name, String lexeme);                

}

We can thus replace all the instantiations of all those concrete AToken subclasses with calls to the makeToken() method of an ITokenFactory instance.   Since AToken only defines an abstract method for execute(), a concrete ITokenFactory class simply has to return an instance of AToken that contains the supplied lexeme value and overrides execute() to call the visitor’s caseAt() as per the supplied name value. 
To make this problem more “realistic”, let’s pretend that we have to achieve “backward compatibility”.   This issue is a real life one that every software manufacturer faces.  That is, let’s assume that there’s old code out there that still uses the “old” style of parsing (ala Exam2!) and still uses Tokenizer3 which pumps out all those old AToken subclasses.   This means that we are not free to change AToken or Tokenizer3 in any way.   Thus we have to write our own, modified version of Tokenizer3, called Tokenizer4 to use our new techniques.   The parsing developed for this exam in parts A-C are all compatible with the new tokens so we can replace the tokenizer in RDPFrame without any problems.

You are to 
· complete the code for the concrete TokenFactory class and
· complete the code for the Tokenizer4 class to use an ITokenFactory instance to instantiate the tokens.
To test your code, modify RDPFrame.makeOrigParser() and RDPFrame.makeXMLParser()  to use Tokenizer4 instead of Tokenizer3.  (Just comment out the appropriate line and uncomment the following line.)
For syntax reference, please look at the code in the old, concrete AToken subclasses and in the AToken class itself. 
Just think about how much code you have vaporized in converting to use your new formulations for the parsing factories and grammar tokens!  Wow!
Please attach your code for the above parts to this exam:  RDPFrame.java, CheckMatchingTagsAlgo.java, TokenFactory.java, Tokenizer4.java
2) (40 pts total) Modeling Music
In the spirit of Comp410’s presentation of their “Lygeia Sound Designer” the other day, let’s consider the task of creating an object-oriented model of music.
First here’s a bit of background about music.   This is probably old hat for you all, but I’m trying to make sure that certain aspects are emphasized. (Please correct me if I say anything that is incorrect or misleading!).   The following is a brief description of some of the major components of Western music and is not meant to be complete by any means.
Keys:

There are 12 distinct keys in music, numbered here for easy reference:

	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11

	A
	A#/ Bb
	B
	C
	C#/ Db
	D
	D#/ Eb
	E
	F
	F#/ Gb
	G
	G#/ Ab


The above keys constitute an octave, which spans a factor of two in frequency.    The reference frequency is for the A above “Middle C”.  That A note has a frequency of 440 Hz.
The term “key” also refers to a set of 8 keys from the above total set of 11 possibilities and can be either a “major” or “minor” key.   
Relative to the first key value above, which defines the name of a key, major and minor keys can be described as

Major key:  0, +2, +4, +5, +7, +9, +11

Minor key: 0, +2, +3, +5, +7, +8, +10

 Notes:

 A particular note played in music is characterized by it’s key and octave (relative to some reference point, usually the 440 Hz A).   This is the note’s pitch.
An instrument is capable of playing notes with a pitch and timbre.  The timbre is the set of sub-harmonics that also played along with the main pitch that defines the note.   The exact frequencies that create the timbre of the instrument is what makes each instrument sound unique, i.e. what makes a clarinet sound different than a saxophone.    Usually, simply specifying the instrument automatically defines the characteristics of its timbre. 

A note also has a duration, which is measured in terms of the tempo (see below).    The duration of a note is specified as a rational number denoting the relative duration of the note with respect to the time between beats of the tempo.   A rational number is a fraction definable as the ratio of two integers, e.g. 3/2 or 3/4.
Notes are played at some specified volume, which may change over time.

A rest is a like a note with a duration but no sound (i.e. no pitch and volume).

A tuplet is a series of notes that span several beats.   A tuplet is described as a fraction (rational number) that is the ratio of how many notes would normally be spanned by the duration of the total notes in the tuplet relative to the total number of notes in the tuplet.   For instance, a “triplet” could be described as “2/3” because it is three notes in the normal time of only two notes.    This is equivalently the duration of each note in the tuplet.   
A chord is a set of notes played simultaneously.   Note that a possibility is a chord where some of the notes vary during the duration of the chord.   One may question whether this truly is or is not to be considered a chord.  One might also question the existence of chords as a distinguishable element of music.
A musical phrase is a sequence of notes and rests.    A phrase could also be considered to be composed of multiple simpler phrases played simultaneously.    How chords figure into this is an interesting question.

Musical passages can be expressed in terms of refrains, phrases that are played multiple times and repeats, which are phrases that are replayed multiple times. 
A track is a sequential set of phrases played by a particular instrument.    A musical composition consists of multiple, simultaneous tracks.
Tempos:

Music is regulated by the number of beats per minutes in its tempo.  A beat is an regularly occurring event in time.   The tempo is rate at which the beats occur and is measured as a frequency.    The tempo could change over time, possibility suddenly.
A measure is a repeating, fixed set of beats.   The first beat of a measure is usually emphasized.   To a lesser degree, every n’th beat in the measure may also be emphasized.   For instance in what is called “6/8 time”, there are 8 beats per measure, with emphasis on every third beat.   The pattern of emphasis could also change over time, in the sense of changing time signatures.
Other notions:

Percussion instruments are usually considered to be playing notes, though perhaps without pitch but with sound and volume.    Not all percussion instruments are without pitch however, e.g. marimbas and kettle drums. 

Trills are high speed alternations between adjacent notes.  They are usually not specified in terms of the duration of each note, though physically, that duration is well defined. 

There are many more aspects of music that I haven’t included here that you may wish to consider.

I have explicitly avoided descriptions of things like clefs, time signatures, whole/half/quarter/eighth notes, etc. because these are notations of music and are not explicitly fundamental descriptions of the music itself.  Be careful about being caught by that distinction in your design.
Possible musical processing actions
· Play a musical composition or track or phrase.
· Transposing the key of a composition, track or phrase.
· Changing a composition to/from major and minor keys.

· Change the tempo of phrases while the music is playing.
· Combining tracks, phrases, etc
· Etc.

You are to design a object-oriented model of music that is able to describe as many of the above aspects as possible and to be able to perform the above described processing actions.
You are NOT required to create operational code!  Focus instead on the structural aspects of your design and how that structure will enable various algorithms to be performed.  DON’T GET TOO CARRIED AWAY WITH SMALL IMPLEMENTATION DETAILS!
Your design will be evaluated on the following criteria:

· Flexibility:  Can your design be used in a wide variety of musical situations?

· Extensibility: Can your design be easily extended to accommodate more features and behaviors of music?

· Robustness:  Does your design automatically protect itself from improper constructions or usages?

· Correctness: Does your design correctly implement the above aspects and processing of music? 
For grading purposes, this question is broken into two parts:

A) (25 pts) Structural design:   How well does your class architecture implement the described features and aspects of music?  Discuss your design and how it is a good representation of music.

B) (10 pts) Algorithmic design: How well does your design implement the described processing actions?  Discuss, in high level terms, how algorithms to perform the above processing could be implemented using your design.
The design criteria described above applies to both parts A and B.

You may use the Internet or any other resources except people, to research about musical ideas and music modeling.   Be sure to give credit to where it is due.
You do not need to show a design with tremendous specifics.   Your job is to prove that your design, given the proper support infrastructure (e.g. startup/initialization, MVC code, etc) and detailed implementations of the variant components, would be able to meet all the above requirements.

Each class and method you create should be commented using Javadoc comments as to exactly what it is supposed to do in your design and how it helps achieve the above design specifications.   

· Below, create a UML diagram of your design.  You may use your own UML diagramming tool, Microsoft Word’s drawing tools, or least preferably, a clear and legible hand-drawn diagram.  
· Attach your Java code to the exam as well.
· Below, also include any prose descriptions of your classes and algorithms that are not included in your Javadocs.  
· Be sure to discuss exactly what features and behaviors were definitely implemented and what were definitely not implemented.

· Please create the HTML Javadoc pages so they can be easily read.   Put the Javadocs in the “music\docs” folder.
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