CS 245 Program III
The Game of Life
Due: 17-Oct-2003
10 points

Problem Statement

You are to write a Java program that “plays” the game of Life. The Game of Life (or simply Life) is not a “game” in the traditional sense. There are no players, and no winning or losing. Rather the “game” is a simulation of a population of “pieces” as they live and die from generation to generation. To begin, the "pieces" are placed in the starting position. After that, the rules of the game determine everything that happens. While this may not seem like much fun, wait and see. It is really interesting to watch the patterns that result from various starting configurations. In fact, others have found the game so interesting that many applications have been developed (see http://www.math.com/students/wonders/life/life.html for some interesting discussion and examples).
Life is played on a grid of square cells--like a chess board. A cell can be alive (has a “piece” on it) or dead (does not have a “piece” on it). A live cell is shown by putting a marker (an ‘X’ or a different color) on its square. A dead cell is shown by leaving the square empty. Each cell in the grid has a neighborhood consisting of the eight cells in every direction including diagonals (the borders of the grid wrap around on each other).

To apply one step of the rules, we count the number of live neighbors for each cell. What happens next depends on this number.

· A dead cell with exactly three live neighbors becomes a live cell (birth).

· A live cell with two or three live neighbors stays alive (survival).

· In all other cases, a cell dies or remains dead (overcrowding or loneliness).
The following sequence illustrates each of these rules (be sure you understand this sequence).

	[image: image1.png]1ol
=10l x|

	[image: image2.png]1ol
=10l x|

	[image: image3.png]1ol
=10l x|

Note: The number of live neighbors is always based on the cells before the rule was applied. In other words, we must first find all of the cells that change before changing any of them. Sounds like a job for a computer!
Your mission, should you choose to accept it, is to implement the Game of Life.
Design Constraint

· Your program must follow the class design given in the attached “Life.jar” file. Simply save the jar file into your H: drive and import it into Eclipse.
· The design includes the use of the Command and Visitor design patterns discussed during lecture. The following partial UML Class Diagram illustrates the salient features of the design.

[image: image4.png]Game OflifePanel
7 Color - LIVE_COLOR

Color - DEAD_COLOR
1t GareOILife - gace

it celBleght el
[ool GameOfLife ot o
+ Gune OILi-Pasel oI i FOWS it cal
[void s itilne) it - COLS [boolean - isklive
-+ i peintComponent(Graphics CellD :gid + Celliat 1, int)
[void - drawGidGraphis) GaeOLifL : wseraterface + oid - ve()
[FF void - drwwLives(Graphics) F GaeOfLifeint 1, mt o) |+ void - die()
B + int getRows() + boolean - islive()
[+ int : getCols() + void : toggle()

Game O UL "

+ Cell : cellst(int 1, int c)
i toggl{nt 1, int)

7 GareOILEs - e
GuneOfLisParel s visr

g p——

IButton : advanceBrtton

+ GaneOILiEUI(Strig !, GareOIL i

[FF boolean - ishlive(int 1, nt)

-+ void : addTolLivelleighbors(List i)
+ int -t OfNeighbors(GaneOILie)
[+ void - accept(LifeVisitorv, GameOfLie g List enk)

[void - intilize)

+ void : update)
B

B

+ void - visitLiveCall(Coll , GameGQfLe g List omds) =
-+ void vistDead Coll(Call , GameGfLe g, List omds)

-+ void :advance(Lif-Visitorv) |
| |
Tuses |
Vv s
Lfeater | TifeCommand
-+ oid vii(Coll e, GameOILif ¢ List o) | [FE el cal

+ void onecutef)
B

F Lif-Corman(Cell cel)

‘HighLife Vistior

TraditionalLife Vistior

+ void - visitLiveCellCellc, GameOfLif g List omds)
+ void - visitDeadCell Cell ¢, GameOfLift g List ces)
B

+ void - visitLiveCellCelLc, GameOfLif g List omds)
+ void - visitDeadCell Cell ¢, GameOfLift g List ces)
B

]
DicConmand

]
ThwConmand

[+ DisConunand(Cellcel)
+ void - exerute)
B

-+ LiveComuand(Cell el
+ void : exerute)
B

· To help you understand this application of the Visitor design pattern, the following sequence diagram illustrates the communication that takes place when this pattern is applied to the Life program (this particular example illustrates communication when a dead cell becomes a live cell).
[image: image5.png]GameORL UL

GameOLife

s
List

el

*visit(e, this, orak)

s

bobepttts g, ere)

visi{DeadCel(this, garee,crjuls)

il evr Liveorunand(e)

Submission Requirements

· You are to turn in a listing of your program's source code complete with a sample run showing your system’s behavior on the approved test data (a starting configuration to be posted prior to the due date).
· You are to turn in a printed JavaDoc description of your source code.
· You are also to turn in a brief discussion as to the benefits of using the Command and Visitor design patterns in this assignment.
