
Teaching Design Patterns in CS1: a Closed Laboratory
Sequence based on the Game of Life

Michael R. Wick
Computer Science Department

University of Wisconsin-Eau Claire
Eau Claire, WI 54701
wickmr@uwec.edu

ABSTRACT
Design patterns are an important element of today’s
undergraduate curricula. However, their inherent complexities
often make them difficult for entry-level students to even partially
grasp. In this paper, we describe the latest in our continuing
efforts to build educational materials appropriate for infusing
design patterns in entry-level computer science courses.

Categories and Subject Descriptors
K.3 [Computers & Education]: Computer & Information
Science Education – Computer Science Education.

General Terms
Design.

Keywords
Design Patterns, Game of Life, CS1, Laboratory.

1 INTRODUCTION
Design patterns [1] have emerged over the last decade as a
necessary component of a software educator’s arsenal of design
and implementation techniques (for example, [2]). Some authors
argue that the use of design patterns can create designs that are far
more complicated than necessary for entry-level computer science
applications (for example, [3]). The key point is that the use of
design patterns can add complexity that is called for. However,
we have found that with the proper simplification and
customization, many popular design patterns can be presented to
entry-level computer science students in such a way that the
resulting design is understandable and that the presence of the
design pattern has real and significant advantages for the system.
While we are the first to admit that the resulting designs are
typically more complicated than those that entry-level students
would develop on their own, we believe that it isn’t the
complication that students object to; it is the fruitless complication
of using design patterns without significant and real value-added.

Over the last few years, we have worked on developing a
collection of exercises, lectures, and laboratories designed to
introduce entry-level students to the power and elegance of design
patterns (for example, [4] [5]). This paper presents the outcomes
of our latest work in this area - a series of closed laboratory
assignments designed to introduce students to the power and
elegance of design patterns through their application to the classic
Game of Life [6] program.

2 GUIDING PRINCIPLES
Before diving into the details of the Game of Life laboratory
sequence, it is worth pausing for a moment to reflect on the
guiding principles that steer us in our work to infuse design
patterns in the entry-level computer science coursework. These
principles fall into two categories for the purpose of this paper –
General Principles and Design Pattern Principles.

2.1 General Assignment Selection Principles
Use assignments that involve graphical user interfaces. This
doesn’t mean that the students need to implement the graphics.
Rather, given the ubiquitous presence of “sexy” computer
applications in their lives, students will be more engaged in
assignments that look and feel like the computer programs with
which they are familiar.
Use assignments that include an element of chance,
experimentation, or surprise. We have found that students are
more engaged in the software development process when the end
artifact is something with which the students can “play” and
experiment.
Use assignments that have a connection to the student’s
perception of the “real world”. Seemingly more so every year,
our students want to see applications even in the first semester
that have some kind of connection to the real world. We have
found it much easier to keep students engaged if they can see
some real-world application for the system they are developing.

2.2 Design Pattern Assignment Selection Principles
Use classic computer science assignments as the basis for the
design pattern assignments. According to Webster’s Dictionary,
“classic” is defined as 1) a work of enduring excellence; 2)
historically memorable; 3) a traditional event. Classic computer
science examples by their very definition are excellent examples
for illustrating key computer science concepts. We should
harness the proven value of these classics even when attempting

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

SIGCSE’05, February 23–27, 2005, St. Louis, Missouri, USA.
Copyright 2005 ACM 1-58113-997-7/05/0002...$5.00

487

to introduce students to additional concepts beyond the original
intent.
Remove all unnecessary complication from the design pattern
without removing the essential characteristics. Design patterns,
in their full glory, typically involve the use of abstract classes,
interfaces, inheritance, polymorphism, and so on. This can be a
daunting list of concepts for an entry-level student to consume at
one time. However, many specific applications of design patterns
do not really call for this generality. Design patterns can be
simplified for presentation to entry-level students without losing
the essential characteristics that make the design patterns
valuable.
Choose only design patterns that have a real value-added to the
application. As with almost any software development concept,
design patterns can be applied in places where they really don’t
have anything to add to the design. Doing so tends to leave
students with the feeling that all design patterns add to a design is
complexity [3]. It is important to carefully choose the design
patterns for entry-level students so that the value-added of the
design pattern is obvious and real.
Use refactoring as a mechanism for helping students to
understand the power and impact of design patterns. Entry-level
students are highly unlikely to come up with the designs
suggested by typical design patterns. Rather, they tend to take the
fastest and easiest solution to the problem (which doesn’t mean
the best solution). By starting students with a design that they
find reasonable and understandable and then refactoring that
design to introduce design patterns, students get a better
appreciation for value-added by the design pattern.
The Game of Life fits particularly well with most of these guiding
principles. The Game of Life is a classic computer science
assignment with a proven record of teaching students important
programming techniques. The graphical user interface for the
Game of Life is simple enough to provide as a pre-cooked
software component but sufficiently interesting in appearance so
as to keep the students’ attention. While the Game of Life is
driven by deterministic rules, the behavior of those rules over
sufficiently many generations is interesting and surprising. The
Game of Life also provides a fertile ground for introducing
important design patterns that have a real and significant value-
added to the student. The Game of Life, however, does not score
very well on the “real-world” metric. Certainly, one can show the
types of biological populations that the Game of Life can be used
to model, but for most students this is a stretch. However, given
the other qualities of the Game of Life assignment, we have still
found it to be a popular and engaging exercise for the students.

3 THE LABORATORY SEQUENCE
This section outlines a series of closed laboratory assignments
based on the Game of Life that, one by one, introduce entry-level
computer science students to the Observer, State, Singleton,
Command, and Visitor design patterns [1].

3.1 Pre-Laboratory Design
At the beginning of the first laboratory, students are given a
complete implementation of the Game of Life as summarized in
the design shown in Figure 1. This design is best described as the
“monolithic” design that an entry-level computer science might
originally develop. The design centers on a single class that

includes both the domain rules of the Game of Life and the user
interface. The implementation is straight-forward enough that
nearly all students can quickly and easily digest the code.
However, it doesn’t typically take very long before the students
realize that this simplistic design lacks the kind of generality and
robustness appropriate for the Game of Life application.

Figure 1: A Starting Design

3.2 The Observer Design Pattern
The first improvement that we introduce to the students is the
concept of separating the presentation and domain layers of the
system. In particular, we introduce the Observer design pattern
[1,p.293]. The Observer design pattern is applicable and
appropriate in many situations including when 1) the application
has two separate aspects that can be varied independently of one
another; or 2) the application involves objects that when changed
require changing other objects.
The Game of Life has both of these characteristics. Students see
that the visual representation of the Game of Life and the actual
structure of “live” and “dead” cells are two separate aspects of the
system. Further, the students are quick to point out that when the
cells of the game change state (from “live” to “dead” or vice
versa) the domain must notify the graphical user interface to allow
it to update itself. Likewise, when the user clicks on a cell in the
user interface to toggle the cell from “live” to “dead” or “dead” to
“alive”, the user interface must notify the domain so that it can
record the appropriate changes to its model.
The students are then introduced to the refactored design
summarized in Figure 2.

Figure 2: The Observer Pattern in the Game of Life

488

Students are given the code for this improved design but asked to
complete several critical elements that achieve the desired
realization of the Observer design pattern:
o Implement the “attach(GameOfLifeUI)” method of the

GameOfLife class that allows additional user interfaces to be
attached to the game.

o Implement the “detach(GameOfLifeUI)” method of the
GameOfLife class that removes a user interface from the list
of observers for the game.

o Implement the “notifyObservers()” method of the
GameOfLife class which involves the for-loop shown in
Figure 2.

o Modify the “advance()” method of the GameOfLife class so
that it correctly causes all observers to be notified of changes
to the domain.

o Modify the “update()” method of the GameOfLifeUI class so
that it correctly retrieves the model from the GameOfLife
and renders the new state on the screen.

Notice that while the students are given considerable portions of
the design already coded, they are asked to gain first-hand
experience with implementing the primary aspects of the
Observer design pattern.

3.3 The State Design Pattern
The next stage of the laboratory is designed around two primary
lessons: 1) software solutions should be designed around the
language of the problem not the language of the solution; and 2)
polymorphism is a powerful technique for enabling objects to
change their behavior over their lifetime. To help instill these
lessons into the students, we next introduce the State design
pattern [1,p.305] which is appropriate in many situations
including when an object’s behavior depends on its state and it
must change its behavior at run-time depending on its state.
In the previous implementation, the “state” of a cell (“alive”
versus “dead”) is represented as a matrix of Boolean values. This
of course leads to conditionals that ask “if cells[i][j] is true
then...”. Clearly, the domain of the Game of Life does not involve
Boolean values. Rather, the language of the problem talks about
cells as either “alive” or “dead”. We illustrate to students that by
using a Boolean matrix, we have exposed a design decision.
Further, students also see that a given cell conceptually changes
state some times as the program executes. Using the State design
pattern we present the students with the refactored design
summarized in Figure 3.
In this design, we replace the matrix of Boolean values with a
matrix of Cells. Each Cell instance holds an instance of a
CellState. The CellState is either an instance of DeadState or
AliveState. When an instance of the Cell class receives a
message, the Cell instance passes the message onto the CellState
instance whose behavior is determined by its actual (dynamic)
type. For example, an instance of AliveState, when requested to
“toggle()” returns an instance of DeadState. This new instance is
saved by the Cell. In the future, the Cell will now behave as if it
were actually DeadState.

Again, students are given the code for this design and asked
to complete a few critical methods involved in the concrete
implementation of the State design pattern:

o Implement the “live()” method of the Cell class to simply
call the “live()” method of the CellState class and save the
returned CellState as the new CellState for the Cell object.

o Implement the “die()” method of the Cell class following the
same mechanism as the “live()” method described above.

o Implement the “live()” method of the DeadState class so that
it defines the behavior of a dead cell coming to life.

o Implement the “die()” method of the AliveState class so that
it defines the behavior of an alive cell dieing.

o Modify the “advance()” method of the GameOfLife class so
that it uses a matrix of Cells.

This specific set of exercises gives the students hands-on
experience with the implementation of the delegation which lies at
the heart of the State design pattern.

Figure 3: The State Pattern in the Game of Life

3.4 The Singleton Design Pattern
Next, the students are shown that AliveState and DeadState just
added to the design have no local state themselves. That is, they
have no attributes. It thus seems rather silly and inefficient to
keep generating new instances of these two classes as the program
proceeds from generation to generation. The Singleton design
pattern [1, p.127] is applicable in many situations including when
1) there must be exactly one instance of a class; or 2) a class
contains no local state
Figure 4 summarizes the application of the Singleton design
pattern to the Game of Life.

Figure 4: The Singleton Pattern in the Game of Life

489

Notice that this design involves the use of a private constructor
and a public “create()” method to gain access to the single shared
instance of each class. Again, the students are given code and
asked to complete several key aspects:
o Implement the static “create()” method in the AliveState

class as shown in Figure 4.
o Modify the “die()” method of the AliveState class so that it

uses the “create()” method to get an instance of the
DeadState rather than using the now private constructor.

o Initialize the static variable in the DeadState class that holds
access to the one shared instance of the DeadState class.

o Modify the “live()” method of the DeadState class so that it
uses the “create()” method.

o Modify the constructor of the Cell class so that it is
implemented using the “create()” method of either the
DeadState or AliveState class.

This particular set of exercises gives the students hands-on
experience with the use of a static variable and a private
constructor to control class instantiation – the essence of the
Singleton design pattern.

3.5 The Command Design Pattern
Recall that the Game of Life uses the states of the surrounding
cells to determine the state of each cell in the next generation. For
example, based on the particular rules used, a live cell with a
certain number of live neighbors dies (starvation). However, you
can’t simply use a pair of nested for-loops to walk through the
matrix of cells changing them as appropriate. To do so would
then change the number of alive and dead cells for the neighbors
of the mutated cell and thus would destroy the environment that
should have determined the states of the neighboring cells. The
typical solution used by entry-level programmers is to create a
second copy of the matrix, using the original matrix to decide if
cells live or die and then actually mutating them only in the copy
of the matrix. After all cells are processed, the original matrix is
replaced with the new copy. This seems to strike students as silly
and inefficient (because it is). The real problem is that we need to
separate the time between when we decide that a live cell must die
or a dead cell must live. The Command design pattern [1,p.233]
is appropriate when you wish to specify, queue, and execute
requests a different times. Figure 5 summarizes the application of
the Command design pattern to the Game of Life.
The solution involves the creation of two classes that represent the
“live” command given to a dead cell or the “die” command given
to a live cell. As the GameOfLife moves through the matrix of
cells, it creates instances of the LiveCommand or the
DieCommand as appropriate. Notice that both LiveCommand and
DieCommand are subclasses of LifeCommand which holds the
actual cell involved in the command. When the matrix is
completely processed, the “execute()” method of each saved
LifeCommand is run which in turns sends the appropriate request
(live() or die()) to the appropriate Cell.
The students are given an implementation of the Game of Life
using the Command design pattern and are asked to:
o Implement the constructor of the LifeCommand class so that

it saves the specific Cell instance for which the message is
intended.

o Implement the “execute()” method of the DieCommand class
as shown in Figure 5.

o Implement the “execute()” method of the LiveCommand
class analogous to the “execute()” method of the
DieCommand class.

o Modify the “advance()” method in the GameOfLife class so
that it creates a list of LifeCommands as it moves through the
Cell matrix. It must also include a loop to move through the
resulting list asking each LifeCommand to “execute()”.

This specific set of exercises allows the student to gain hands-on
experience with the single most important aspect of the Command
design pattern; namely the ability to separate the construction of a
request from its actual execution.

Figure 5: The Command Pattern in the Game of Life

3.6 The Visitor Design Pattern
At this point in the laboratory, the students have created a rather
robust design for the Game of Life implementation. One (at least)
serious defect still remains, however. Namely, the survival rules
of the Game of Life, for which there exist numerous variations,
have been coupled to the implementation of the production of new
generations. This is where the Visitor design pattern comes in
[1,p.331]. The Visitor design pattern can be used in several
situations including when 1) many distinct operations need to be
performed on objects in an object structure and you want to avoid
“polluting” their classes with these operations; or 2) the classes
defining the object structure rarely change, but you often want to
define new operations over the structure.
For the Game of Life, the object structure is the matrix of cells.
The distinct operations are the survival rules that we wish to apply
to the matrix of cells to create the list of LifeCommands. Most
variations of the Game of Life focus on variations in the survival
rules and not on the states of a cell (alive vs. dead) and therefore
the object structure doesn’t need to change but the operations
(survival rules) do need to change. Figure 6 summarizes the
application of the Visitor design pattern to the Game of Life.
The basic idea is that each Cell in the matrix is given a method
“accept(...)” that allows a particular LifeVisitor (survival rule) to
be applied to each Cell. The Cell, as it always does, simply
delegates the “accept(...)” request to its CellState instance. The
CellState class (which is either an instance of DeadState or
AliveState) invokes the appropriate “visitX(...)” method from the
LifeVisitor (for example, “visitLiveCell(...)”. This method

490

applies the particular rules which define how to visit a live cell
and either places a new LifeCommand in a list or does not, as
appropriate. Notice that in this design, the detail of the survival a
rule are decoupled from the operation of the Game of Life and
thus can be allowed to vary independently and dynamically as the
game operates.

Figure 6: The Visitor Pattern in the Game of Life

Again, the students are given code for this design of the Game of
Life and asked to:
o Implement the “accept(...)” method of the Cell class which

simply delegates the method call to the current CellState
instance.

o Implement the “accept(...)” method in the AliveState class by
having it invoke the “visitAliveCell(...)” method of the
LifeVisitor.

o Implement the “accept(...)” method of the DeadState class
analogous to the same method in the AliveState class.

o Implement the “visit(...)” method of the LifeVisitor class
using double dispatching to invoke the appropriate state-
specific visit method.

o Modify the “advance()” method in the GameOfLife class to
use the explicit LifeVisitor rather than the hard-coded
survival rules.

o Implement the “visitDeadCell(...)” method in a LifeVisitor
subclass to correctly define the appropriate survival rule for
the traditional Game of Life implementation.

This set of exercises is by far the most extensive and challenging
for the students. As is shown in the next section, for our specific
laboratory sequence, this portion of the laboratory sequence is a
single closed laboratory by itself.

3.7 A Sample Division of the Lab Sequence
Our entry-level course includes a 2-hour per week closed
laboratory setting. The entire Game of Life sequence involves
three of these laboratories periods (of a total of 15 laboratory
periods). The laboratory sequenced is introduced in the final third
of the semester after the students have already experienced
laboratories on rather standard CS1 material. In the first
laboratory, the students are introduced to the concept of design
patterns, given the monolithic starting design, and asked to update

the design to include the Observer design pattern and the State
design pattern. In the second laboratory, the students are
refreshed on the application and asked to incorporate the
Singleton and Command design patterns. The third and most
challenging laboratory is the third laboratory which involves the
incorporation of the Visitor design pattern. Again, however, this
is just a sequence that we have found useful and appropriate.

4 SUMMARY AND CONCLUSION
We have described a series of closed laboratory experiences that
help students to learn the fundamentals of the five powerful
design patterns within the context of the classic Game of Life
computer application. We have developed a specific set of
exercises that allow each student to gains hands-on experience
with the essential characteristics of these design patterns without
becoming overwhelmed by the need to implement the other
aspects of the system. Further, by selecting core intertwined
functionality for the students to implement, we avoid the kind of
“blind coding” that can be a problem with “program-in-progess”
assignments in which students add a single line here or there but
never understand the bigger picture. The students don’t need to
understand the details of how the entire system works but rather
are focused on understanding just those aspects that are affected
by the design pattern under study.
We have also found that from this first-year experience, most
students are well prepared to further study and apply these and
other design patterns in subsequent courses. More importantly,
each student has the case studies of this laboratory sequence in
their background as a common example of how object-oriented
design and separation of concerns can lead to robust and powerful
designs.

REFERENCES
[1] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design

Patterns: Elements of Reusable Object-Oriented
Software, Addison-Wesley Publishing, (1994).

[2] D. Nguyen, and S. Wong. Design Patterns for Sorting,
ACM SIGCSE Bulletin 33(1):263-267, Proceedings of the
thirty-second SIGCSE technical symposium on Computer
Science Education , 2001.

[3] O. Astrachan, OO overkill: when simple is better than not,
ACM SIGCSE Bulletin 33(1): 302-306, Proceedings of the
thirty-second SIGCSE technical symposium on Computer
Science Education, 2001.

[4] M. Wick, An object-oriented refactoring of Huffman
encoding using the Java collections framework, ACM
SIGCSE Bulletin 35(1): 283-287, Proceedings of the 34th
SIGCSE technical symposium on Computer Science
Education, 2003.

[5] M. Wick, Kaleidoscope: using design patterns in CS1, ACM
SIGCSE Bulletin 33(1): 258-262, Proceedings of the thirty-
second SIGCSE technical symposium on Computer Science
Education, 2001

[6] M. Gardner, The fantastic combinations of John Conway’s
new solitaire game “life”, Scientific American, 223: 120-
123, 1970.

491

