Comp 212 February 11, 2000

Overview

e The Singleton Pattern
e Nested and Inner Classes

e Some Philosophy

Comp 212 February 11, 2000

The Singleton Pattern

e Recall the EmptyListNode class that represents the “empty list".
Conceptually, there is only one empty list in the “world”.

— The concept is akin to that of the empty set: there is only one empty

set.

e How can we ensure that only one instance of EmptyListNode can be
created throughout the life of a program?

e There is away to design a class to ensure such uniqueness property. It is
called the Singleton Design Pattern.

Comp 212 February 11, 2000

The Singleton Pattern (cont.)

e The following UML diagram describes the pattern:

SingletonClass
. = [
-$_instance: SingletonClass Private constructor has empty body.
-m_:m__.mﬁ_“_:n_mmm_ﬂ] B Mo external client can call this private
+Elniquelnstance() : SingletonClass constructor for instantiation.

Checkif _instance is null or not.
If it i= null, instantiate it.
return _instance.

e Note: The field _instance and the method UniqueInstance() are of
class scope (i.e. static).

Comp 212 February 11, 2000

The Singleton Pattern (cont.)

e The method UniqueInstance() is called a "factory” method as it is
used to manufacture an instance, though unique, of the SingletonClass.

e The class SingletonClass is appropriately called a "factory”. In this very
special case, SingletonClass manufactures its own (unique) instance.
(Recall that we saw the Factory Pattern in Lab 2.)

Comp 212 February 11, 2000

Nested and Inner Classes

e Besides fields and methods, a Java class can also contain other classes.

e The rules for using such classes are similar to fields and methods.

— Access specifier:
* Just like any other class, a class defined inside of another class can
be public, protected, package private, or private.
— Scope specifier:
* Just like any other class, a class defined inside of another class can
be static or non-static.
When it is defined as static, it is called a nested class.
When it is non-static, it is called an inner class.
The enclosing class is called the outer class.
The members (i.e. fields, methods, classes) of a static (nested)
class can access to only static members of the outer class.
The members of an inner class can access ALL members of the
outer class.

Comp 212 February 11, 2000

Nested and Inner Classes (cont.)

e Usage:

— Nested classes are used mostly to avoid name clash and to promote
information hiding.

— Inner classes are used to create objects that have direct access to the
internals of the outer object and perform complex tasks that simple
methods cannot do.

* An inner object can be thought as an extension of the outer object.

x Event listeners for Java GUI components are implemented as inner
classes.

% In the state design pattern, the states of an object are often
implemented as inner objects. Since an inner object has access to
its outer object (the context), there is no need to have setter and
getter methods for the state.

Comp 212 February 11, 2000

Example

e |n the hangman game, a character in the target word can be either in
the hidden state or visible state.

7 1

— When it is hidden it converts to a String as " _
— When it is visible, it converts to a String as the String consisting of
its actual character value.

Comp 212 February 11, 2000

Example (cont.)

e We can apply the state pattern here to implement hangman characters
as objects with states. The pattern calls for the following design steps:

1.

Define a WordChar class to represent the characters in a hangman
word.

Define an abstract AState class as a private static nested class of
WordChar.

Define inner classes HiddenState and VisibleState of WordChar as
concrete subclasses of AState. AState and its concrete variants
represent the states of a WordChar.

Define a field in WordChar to reference an AState, its current state.
All method calls in WordChar are delegated to its state.

Comp 212 February 11, 2000

Example (cont.)

e The UML diagram on the handout illustrates the above design.

e This design makes use of the composite pattern, the state pattern, and
the singleton pattern.

— By implementing the hangman word as a system of cooperating
objects in this manner, you will gain a better understanding of the
object-oriented programming design and concepts.

