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Overview

e [he Visitor Pattern

e Interfaces
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What’s The Matter?

e Each time we want to compute something new, we have to edit each
class and add appropriate methods to each class.

e Is there a way to add new behavior to List without touching any of the
existing code, leaving everything that has been written so far unchanged?
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Toward a Solution...

e The key is to encapsulate the variant behaviors into a separate Union
Pattern (OOPP #1).

— Here, the variant behaviors are the infinitely many algorithms (i.e.
computations) that we want List to perform.

— The invariant behaviors are the methods find(), insert(), and
remove ().

— For List to execute any of these algorithms, we just need to add to the
design of List one more method and never have to modify anything
ever again!
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The Visitor Pattern

e The visitor pattern is a framework for communication and collaboration
between two union patterns: a "host” union and a "visitor” union.

— An abstract visitor is usually defined as an interface in Java.

* It has a separate method for each of the concrete variants of the
host union.

— The abstract host has a method (called the "hook”) to "accept”’ a
visitor and leaves it up to each of its concrete variants to call the
appropriate visitor method.

x This "decoupling” of the host's structural behaviors from the
extrinsic algorithms on the host permits the addition of infinitely
many external algorithms without changing any of the host union
code.

x This extensibility only works if the taxonomy of the host union is
stable and does not change.

- If we have to modify the host union, then we will have to modify
ALL visitors as well!
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The Visitor Pattern (cont.)

e In practice, the host union is encapsulated inside of another class, say
Structure.

— A client program, say StructClient, only deals with the Structure
class and the IVisitor interface.
— An appropriate "factory” will provide the client with concrete visitors
that it wants.
x All the “state-less” visitors should be singletons and are factories
that manufacture unique instances of themselves!
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Declaring Interfaces

e \What is an interface?

— A set of method and constant declarations, without the method

implementations.
x Example
public interface Colorable {
public void setColor(int color);
public int getColor();

}

— One interface can extend another interface.

*x Example
public interface Paintable extends Colorable {

public static final int MATTE = 0, GLOSSY = 1;
public void setFinish(int finish);
public int getFinish();

}
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Using Interfaces

e How do you use an interface?

— In a class definition, we say that a class implements an interface.
*x Example
class Point { int x, y; }

class ColoredPoint extends Point implements Colorable {
int _color;
public void setColor(int color) { _color = color; }
public int getColor() { return _color; }

+

— An interface is a reference type, just like a class.
*x Example

Colorable widget = new ColoredPoint();
widget.setColor (GREEN) ;
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Using Interfaces (cont.)

e A class can implement one or more interfaces.

— Example #1
class MyClass implements IYourInterfacel,
IYourInterface2 {

}
— Example #2
class PaintedPoint extends ColoredPoint implements Paintable
{
int _finish;
public void setFinish(int finish) {
_finish = finish;
}
public int getFinish() { return _finish; }



