Comp 212 February 16, 2000

Overview

e [he Visitor Pattern

e Interfaces



Comp 212 February 16, 2000

What’s The Matter?

e Each time we want to compute something new, we have to edit each
class and add appropriate methods to each class.

e Is there a way to add new behavior to List without touching any of the
existing code, leaving everything that has been written so far unchanged?



Comp 212 February 16, 2000

Toward a Solution...

e The key is to encapsulate the variant behaviors into a separate Union
Pattern (OOPP #1).

— Here, the variant behaviors are the infinitely many algorithms (i.e.
computations) that we want List to perform.

— The invariant behaviors are the methods find(), insert(), and
remove ().

— For List to execute any of these algorithms, we just need to add to the
design of List one more method and never have to modify anything
ever again!



Comp 212 February 16, 2000

The Visitor Pattern

e The visitor pattern is a framework for communication and collaboration
between two union patterns: a "host” union and a "visitor” union.

— An abstract visitor is usually defined as an interface in Java.

* It has a separate method for each of the concrete variants of the
host union.

— The abstract host has a method (called the "hook”) to "accept”’ a
visitor and leaves it up to each of its concrete variants to call the
appropriate visitor method.

x This "decoupling” of the host's structural behaviors from the
extrinsic algorithms on the host permits the addition of infinitely
many external algorithms without changing any of the host union
code.

x This extensibility only works if the taxonomy of the host union is
stable and does not change.

- If we have to modify the host union, then we will have to modify
ALL visitors as well!



Comp 212 February 16, 2000

The Visitor Pattern (cont.)

e In practice, the host union is encapsulated inside of another class, say
Structure.

— A client program, say StructClient, only deals with the Structure
class and the IVisitor interface.
— An appropriate "factory” will provide the client with concrete visitors
that it wants.
x All the “state-less” visitors should be singletons and are factories
that manufacture unique instances of themselves!



Comp 212 February 16, 2000

Declaring Interfaces

e \What is an interface?

— A set of method and constant declarations, without the method

implementations.
x Example
public interface Colorable {
public void setColor(int color);
public int getColor();

}

— One interface can extend another interface.

*x Example
public interface Paintable extends Colorable {

public static final int MATTE = 0, GLOSSY = 1;
public void setFinish(int finish);
public int getFinish();

}



Comp 212 February 16, 2000

Using Interfaces

e How do you use an interface?

— In a class definition, we say that a class implements an interface.
*x Example
class Point { int x, y; }

class ColoredPoint extends Point implements Colorable {
int _color;
public void setColor(int color) { _color = color; }
public int getColor() { return _color; }

+

— An interface is a reference type, just like a class.
*x Example

Colorable widget = new ColoredPoint();
widget.setColor (GREEN) ;



Comp 212 February 16, 2000

Using Interfaces (cont.)

e A class can implement one or more interfaces.

— Example #1
class MyClass implements IYourInterfacel,
IYourInterface2 {

}
— Example #2
class PaintedPoint extends ColoredPoint implements Paintable
{
int _finish;
public void setFinish(int finish) {
_finish = finish;
}
public int getFinish() { return _finish; }



