Comp 212 February 28, 2000

Overview

e Boolean and Integer Operators
e The Class java.lang.Boolean

e Arrays

Comp 212 February 28, 2000

Integer Operators

e The comparison operators, which result in a value of type boolean:

— The numerical comparison operators <, <=, >, and >=
— The numerical equality operators == and ! =

e The numerical operators, which result in a value of type int:

— The unary plus and minus operators + and —

— The multiplicative operators *, /, and %

— The additive operators + and —

— The increment operator ++, both prefix (++x) and postfix (x++)
— The decrement operator ——, both prefix and postfix

— The signed and unsigned shift operators <<, >>, and >>>

— The bitwise complement operator ~

— The integer bitwise operators &, |, and A

Comp 212 February 28, 2000

Boolean Operators

e The relational operators == and ! =
e The logical-complement operator !
e The logical operators &, |, and A

e The conditional-and and conditional-or operators && and ||

Comp 212 February 28, 2000

Programming Tips

e Don't limit your use of Boolean expressions to if statements.

Don't — Do —
boolean flag; boolean flag = x < y;
if (x < y)
flag = true;
else
flag = false;
Don't — Do —
if (x < y) return x >= y;

return false;
else
return true;

Comp 212 February 28, 2000

Programming Tips (cont.)

e Choose carefully between & and &&.

Don't — Do —
boolean flag = ... ; boolean flag = ... ;
if (flag & (x < y)) if (flag && (x < y))
Always increments x Sometimes increments x
boolean flag = ... ; boolean flag = ... ;

if (flag & (++x < y)) if (flag && (++x < y))

Comp 212 February 28, 2000

Programming Tips (cont.)

e Avoid pointless terms.
Don't — Do —

if (true && (x < y)) if (x < y)

Comp 212 February 28, 2000

The Class java.lang.Boolean

e Objects of type Boolean represent primitive values of type boolean.

public final class Boolean {
public static final Boolean TRUE = new Boolean(true);
public static final Boolean FALSE = new Boolean(false);
public Boolean(boolean value);
public Boolean(String s);
public String toString();
public boolean equals(Object obj);
public int hashCode();
public boolean booleanValue() ;
public static Boolean valueOf(String s);
public static boolean getBoolean(String name) ;

Comp 212 February 28, 2000

Arrays

e Arrays...

— are objects,
— are dynamically created, and
— may be assigned to variables of type Object.

e An array object contains zero or more unnamed variables of the same
type. These variables are commonly called elements.

e A non-negative integer is used to name each element. For example,
array0fInts[i] refers to the ¢ 4 1st element in the array0fInts
array.

Comp 212 February 28, 2000

Array Types

e An array type is written as the name of an element type followed by one
or more empty pairs of square brackets. For example, int[] is the type
corresponding to a one-dimensional array of integers.

e An array’s length is not part of its type.

e The element type of an array may be any type, whether primitive or
reference, including interface types and abstract class types.

Comp 212 February 28, 2000

Array Variables

e Array variables are declared like other variables: a declaration consists of
the array’s type followed by the array’s name. For example,

double[] [] matrix0fDoubles;

declares a variable whose type is a two-dimensional array of double-
precision floating-point numbers.

e Declaring a variable of array type does not create an array object. It only
creates the variable, which can contain a reference to an array.

e Because an array’s length is not part of its type, a single variable of array
type may contain references to arrays of different lengths.

10

Comp 212 February 28, 2000

Array Variables (cont.)

e To complicate declarations, C/C++-like syntax is also supported, for
example,

double rowvector[], colvector[], matrix[][];
e This declaration is equivalent to
double[] rowvector, colvector, matrixl[];
or

double[] rowvector, colvector;
double[] [] matrix;

e Please use the latter!

11

Comp 212 February 28, 2000

Array Creation

e Array objects, like other objects, are created with new. For example,
String[] array0fStrings = new String[10];

declares a variable whose type is an array of strings, and initializes it
to hold a reference to an array object with room for ten references to
strings.

e Another way to initialize array variables is

int[] array0fi1To5 = { 1, 2, 3, 4, 5 };
String[] array0fStrings = { "array",

"of",

"String" };
Widget[] array0fWidgets = { new Widget(),

new Widget() 7};

12

Comp 212 February 28, 2000

Array Creation (cont.)

e Once an array object is created, it never changes length!
int[]J [] arrayOfArrayOfInt = {{1,2},{3,4}};

e The array’'s length is available as a final instance variable length. For
example,

int[] array0fi1Tob = { 1, 2, 3, 4, 5 };

System.out.println(array0f1To5.length) ;

would print “5".

13

Comp 212 February 28, 2000

Array Accesses

e All array accesses are checked at run time: An attempt to use an index
that is less than zero or greater than or equal to the length of the array
causes an IndexOutOfBoundsException to be thrown.

14

Comp 212 February 28, 2000

Array Store Exception

e Consider

class Point { int x, y; }
class ColoredPoint extends Point { int color; }
class Test {
public static void main(Stringl] args) A
ColoredPoint[] cpa =
new ColoredPoint[10];
Point[] pa = cpa;
System.out.println(pall] == null);
try {
palO] = new Point();
} catch (ArrayStoreException e) {
System.out.println(e) ;

}

15

Comp 212 February 28, 2000

Array Store Exception (cont.)

e produces the output:

true
java.lang.ArrayStoreException

16

