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Overview

e Boolean and Integer Operators
e The Class java.lang.Boolean

e Arrays
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Integer Operators

e The comparison operators, which result in a value of type boolean:

— The numerical comparison operators <, <=, >, and >=
— The numerical equality operators == and ! =

e The numerical operators, which result in a value of type int:

— The unary plus and minus operators + and —

— The multiplicative operators *, /, and %

— The additive operators + and —

— The increment operator ++, both prefix (++x) and postfix (x++)
— The decrement operator ——, both prefix and postfix

— The signed and unsigned shift operators <<, >>, and >>>

— The bitwise complement operator ~

— The integer bitwise operators &, |, and A
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Boolean Operators

e The relational operators == and ! =
e The logical-complement operator !
e The logical operators &, |, and A

e The conditional-and and conditional-or operators && and ||
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Programming Tips

e Don't limit your use of Boolean expressions to if statements.

Don't — Do —
boolean flag; boolean flag = x < y;
if (x < y)
flag = true;
else
flag = false;
Don't — Do —
if (x < y) return x >= y;

return false;
else
return true;
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Programming Tips (cont.)

e Choose carefully between & and &&.

Don't — Do —
boolean flag = ... ; boolean flag = ... ;
if (flag & (x < y)) if (flag && (x < y))
Always increments x Sometimes increments x
boolean flag = ... ; boolean flag = ... ;

if (flag & (++x < y)) if (flag && (++x < y))
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Programming Tips (cont.)

e Avoid pointless terms.
Don't — Do —

if (true && (x < y)) if (x < y)
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The Class java.lang.Boolean

e Objects of type Boolean represent primitive values of type boolean.

public final class Boolean {
public static final Boolean TRUE = new Boolean(true);
public static final Boolean FALSE = new Boolean(false);
public Boolean(boolean value);
public Boolean(String s);
public String toString();
public boolean equals(Object obj);
public int hashCode();
public boolean booleanValue() ;
public static Boolean valueOf(String s);
public static boolean getBoolean(String name) ;
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Arrays

e Arrays...

— are objects,
— are dynamically created, and
— may be assigned to variables of type Object.

e An array object contains zero or more unnamed variables of the same
type. These variables are commonly called elements.

e A non-negative integer is used to name each element. For example,
array0fInts[i] refers to the ¢ 4 1st element in the array0fInts
array.



Comp 212 February 28, 2000

Array Types

e An array type is written as the name of an element type followed by one
or more empty pairs of square brackets. For example, int[] is the type
corresponding to a one-dimensional array of integers.

e An array’s length is not part of its type.

e The element type of an array may be any type, whether primitive or
reference, including interface types and abstract class types.
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Array Variables

e Array variables are declared like other variables: a declaration consists of
the array’s type followed by the array’s name. For example,

double[] [] matrix0fDoubles;

declares a variable whose type is a two-dimensional array of double-
precision floating-point numbers.

e Declaring a variable of array type does not create an array object. It only
creates the variable, which can contain a reference to an array.

e Because an array’s length is not part of its type, a single variable of array
type may contain references to arrays of different lengths.
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Array Variables (cont.)

e To complicate declarations, C/C++-like syntax is also supported, for
example,

double rowvector[], colvector[], matrix[][];
e This declaration is equivalent to
double[] rowvector, colvector, matrixl[];
or

double[] rowvector, colvector;
double[] [] matrix;

e Please use the latter!
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Array Creation

e Array objects, like other objects, are created with new. For example,
String[] array0fStrings = new String[10];

declares a variable whose type is an array of strings, and initializes it
to hold a reference to an array object with room for ten references to
strings.

e Another way to initialize array variables is

int[] array0fi1To5 = { 1, 2, 3, 4, 5 };
String[] array0fStrings = { "array",

"of",

"String" };
Widget[] array0fWidgets = { new Widget(),

new Widget() 7};
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Array Creation (cont.)

e Once an array object is created, it never changes length!
int[]J [] arrayOfArrayOfInt = {{1,2},{3,4}};

e The array’'s length is available as a final instance variable length. For
example,

int[] array0fi1Tob = { 1, 2, 3, 4, 5 };

System.out.println(array0f1To5.length) ;

would print “5".
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Array Accesses

e All array accesses are checked at run time: An attempt to use an index
that is less than zero or greater than or equal to the length of the array
causes an IndexOutOfBoundsException to be thrown.
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Array Store Exception

e Consider

class Point { int x, y; }
class ColoredPoint extends Point { int color; }
class Test {
public static void main(Stringl] args) A
ColoredPoint[] cpa =
new ColoredPoint[10];
Point[] pa = cpa;
System.out.println(pall] == null);
try {
palO] = new Point();
} catch (ArrayStoreException e) {
System.out.println(e) ;

}
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Array Store Exception (cont.)

e produces the output:

true
java.lang.ArrayStoreException
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