Comp 212 March 20, 2000

Overview

Announcements: Java I/O Tutorial, Sunday, 2-3PM, Location: TBA

- A Sorting Taxonomy (cont.)
- Heap Sort
- Merge Sort

Comp 212 March 20, 2000

Sorting by Divide and Conquer

Recall the abstract class ASorter in the handout.

```
public final void sort(int[] A, int lo, int
public abstract void join(int[] A, int lo, int s, int
                                                        public abstract int split(int[] A, int lo, int hi);
                                                                                                                                                                                                                                                                                                 if (lo < hi) {
                                                                                                                                                                          sort(A, lo, s-1);
sort(A, s, hi);
join(A, lo, s, hi);
                                                                                                                                                                                                                                                                int s = split(A, lo, hi);
    hi);
```

Merge Sort

- Merge Sort is a easy-split, hard-join method.
- Merge Sort takes O(n log n) steps.
- Because each split() divides the array into two (almost) equal-sized parts, each element is join()'ed $log\ n$ times.

Heap Sort

- Heap Sort is a hard-split, easy-join method.
- Think of Heap Sort as an improved (faster) version of Selection Sort.
- Specifically, split(), which finds the minimum (maximum) element steps, where n is the subarray length. in the subarray, is made to run in $O(\log n)$ steps instead of O(n)
- Since $\mathtt{split}()$ is performed n times, where n is the (overall) array length, Heap Sort takes $O(n \log n)$ steps.

How is split() sped up?

The elements in the unsorted portion of the array are organized into a

March 20, 2000

What is a Heap?

- A heap is a binary tree that is almost balanced (we allow a variation of exhibits the heap property: at most 1 in path lengths from the root to the leaves) and that further
- the root, if non-null, is the largest key in the tree, and its left and right subtrees are themselves heaps.

Implementing a Heap?

