Comp 212 March 20, 2000

Overview

e Examples of siftDown() and siftUp()
e Analysis of HeapSorter()'s running time

e Quicksort

Comp 212

Example of siftDown()

March 20, 2000

87

98

63

52

84

76

41

59

49

36

13

79

58

43

23

Comp 212

Example of siftUp()

March 20, 2000

103

87

98

63

52

84

76

41

59

49

36

13

79

58

43

Comp 212 March 20, 2000

Analysis of HeapSorter ()’s running time

e We can derive a tighter bound than O(n log n) by observing that the
time for siftDown () to run at a node varies with the height of the node
in the tree, and the heights of most nodes are small.

e The tighter analysis relies on the property that in an n-element heap
there are at most [n/2"1] nodes of height h.

e The time required by siftDown() when called on a node of height A is
O(h), so we can express the total cost of HeapSorter () as

[log n] [log n] h

> [l0) =0 > o). (1)
h=0

h=0

Comp 212 March 20, 2000

Analysis of HeapSorter()’s running time (cont.)

The last summation can be evaluated by differentiating and multiplying
by x both sides of the infinite geometric series (for |z| < 1)

- 1
MU k= 1_ 4 (2)
k=0
to obtain -
N — (3)
- (1-2)?
k=0

in which z = 1/2 is substituted to yield

3 h 2, ()

£k (1-1/2)2

Comp 212 March 20, 2000

Analysis of HeapSorter()’s running time (cont.)

Thus, the running time of HeapSorter () can be bounded as

[log n] 7 > 1
O(n Y NAVHE:MUMATE:V. (5)
h=0

h=0

Comp 212

e Quick Sort is a hard-split, easy-join method.

e The following diagram illustrate one step.

Quick Sort

P

>P

sort

<=P

>P

March 20, 2000

Comp 212 March 20, 2000

Quick Sort

o If the pivot chosen by split() divides the array into two (almost)
equal-sized parts, each element is split () log n times.

n/ 2

| og n n/ 4

e Thus, in the expected case, Quick Sort takes O(n log n) steps.

