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Overview

e Examples of siftDown() and siftUp()
e Analysis of HeapSorter()'s running time

e Quicksort
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Example of siftDown()
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Example of siftUp()
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Analysis of HeapSorter ()’s running time

e We can derive a tighter bound than O(n log n) by observing that the
time for siftDown () to run at a node varies with the height of the node
in the tree, and the heights of most nodes are small.

e The tighter analysis relies on the property that in an n-element heap
there are at most [n/2"1] nodes of height h.

e The time required by siftDown() when called on a node of height A is
O(h), so we can express the total cost of HeapSorter () as

[log n] [log n] h

> [l0) =0 > o). (1)
h=0

h=0




Comp 212 March 20, 2000

Analysis of HeapSorter()’s running time (cont.)

The last summation can be evaluated by differentiating and multiplying
by x both sides of the infinite geometric series (for |z| < 1)

- 1
MU k= 1_ 4 (2)
k=0
to obtain -
N — (3)
- (1-2)?
k=0

in which z = 1/2 is substituted to yield

3 h 2, ()

£k (1-1/2)2
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Analysis of HeapSorter()’s running time (cont.)

Thus, the running time of HeapSorter () can be bounded as

[log n] 7 > 1
O(n Y NAVHE:MUMATE:V. (5)
h=0

h=0
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e Quick Sort is a hard-split, easy-join method.

e The following diagram illustrate one step.

Quick Sort
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Quick Sort

o If the pivot chosen by split() divides the array into two (almost)
equal-sized parts, each element is split () log n times.

n/ 2

| og n n/ 4

e Thus, in the expected case, Quick Sort takes O(n log n) steps.



