Comp 212 March 27, 2000

Overview

e Milestone #2

e Binary Trees



Comp 212 March 27, 2000

Milestone #2

e You'll need to extend the ordered container to support two new
operations: findNext and findPrev.

public interface IOrderedContainer {

/ %
Returns the (key,value) with the next larger key
from that specified, regardless of whether the
specified key is itself in the container. If
there isn’t a (key,value) with a larger key,

* returns null.

*/
public KeyValuePair findNext (IOrdered key) ;

x X X X X



Comp 212 March 27, 2000

Milestone #2

e If your implementation of I0rderedContainer uses a different name for
the KeyValuePair class, keep that name.
e When are these new operations used? In the following steps...

6. Insert their sum into the Ordered Container.
7. Compute the two new gaps for this number.



Comp 212 March 27, 2000

Milestone #2

e Coping with negative numbers

— Use each number’s absolute value as the key and maintain its (signed)
value in the corresponding object.

— Thus, if you discover that you're inserting a duplicate key into the
ordered container, it's actually one of three cases:
1. -number and —-number
2. —number and number
3. number and number



Comp 212 March 27, 2000

Binary Trees
e Removing the root of an otherwise empty tree.

BRiTree
DatNode

BiTree \\\ /// BiTree

EmptyNode EmptyNode

tree.remRoot (); -> IHOOﬁZOQm.Hmb00ﬁAW5HMNW///////W

—> Iwmmﬁﬂwmm.wmgmmHmSﬁAIHHMWWHHm®~ parent) ;

\

> IHOOﬁZOQm.HmBmmHmSﬁAm.m~\mwn~ this);

—> aunt.remOurParent (grandparent) ;

\

—-> _rootNode.remOurParent (dad, this);

—> grandparent.setRootNode (EmptyNode.Singleton) ;



Comp 212

March 27, 2000

Binary Trees

e The following program creates and prints a simple binary tree.

import binaryTree. *;

class Test {

public
{

static void main(String argsl[])

BiTree tree = new BiTree();

tree.
tree.
.getLeftSubTree() .insertRoot ("I’m the left child!");

tree

tree.
.getRightSubTree() .insertRoot ("I’m the right child!");

tree

tree.

insertRoot("I’m the root!");
setLeftSubTree(new BiTree());

setRightSubTree(new BiTree());

execute(binaryTree.visitor.VerticalPrinter.Singleton,
null) ;



Comp 212 March 27, 2000

Binary Trees

e The printout looks like:

I’m the root!
I’m the left child!

[]
[]
I’m the right child!
[]
[]



Comp 212 March 27, 2000

Binary Search Trees

e In a binary search tree, each node’s key is greater than its left child’s key
and less than its right child

s key.




