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Overview

e Milestone #2

e Binary Trees
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Milestone #2

e You'll need to extend the ordered container to support two new
operations: findNext and findPrev.

public interface IOrderedContainer {

/ %
Returns the (key,value) with the next larger key
from that specified, regardless of whether the
specified key is itself in the container. If
there isn’t a (key,value) with a larger key,

* returns null.

*/
public KeyValuePair findNext (IOrdered key) ;
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Milestone #2

e If your implementation of I0rderedContainer uses a different name for
the KeyValuePair class, keep that name.
e When are these new operations used? In the following steps...

6. Insert their sum into the Ordered Container.
7. Compute the two new gaps for this number.
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Milestone #2

e Coping with negative numbers

— Use each number’s absolute value as the key and maintain its (signed)
value in the corresponding object.

— Thus, if you discover that you're inserting a duplicate key into the
ordered container, it's actually one of three cases:
1. -number and —-number
2. —number and number
3. number and number
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Binary Trees
e Removing the root of an otherwise empty tree.

BRiTree
DatNode

BiTree \\\ /// BiTree

EmptyNode EmptyNode

tree.remRoot (); -> IHOOﬁZOQm.Hmb00ﬁAW5HMNW///////W

—> Iwmmﬁﬂwmm.wmgmmHmSﬁAIHHMWWHHm®~ parent) ;

\

> IHOOﬁZOQm.HmBmmHmSﬁAm.m~\mwn~ this);

—> aunt.remOurParent (grandparent) ;

\

—-> _rootNode.remOurParent (dad, this);

—> grandparent.setRootNode (EmptyNode.Singleton) ;
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Binary Trees

e The following program creates and prints a simple binary tree.

import binaryTree. *;

class Test {

public
{

static void main(String argsl[])

BiTree tree = new BiTree();

tree.
tree.
.getLeftSubTree() .insertRoot ("I’m the left child!");

tree

tree.
.getRightSubTree() .insertRoot ("I’m the right child!");

tree

tree.

insertRoot("I’m the root!");
setLeftSubTree(new BiTree());

setRightSubTree(new BiTree());

execute(binaryTree.visitor.VerticalPrinter.Singleton,
null) ;
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Binary Trees

e The printout looks like:

I’m the root!
I’m the left child!

[]
[]
I’m the right child!
[]
[]
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Binary Search Trees

e In a binary search tree, each node’s key is greater than its left child’s key
and less than its right child

s key.




