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Exceptions

e An exception is an event that occurs during the execution of a program
that disrupts the normal flow of instructions.

e Many kinds of errors can cause exceptions:

— Hardware error
— Programming error: dereferencing null

e \When such an error occurs within a Java method, the method creates
an exception object, which describes the exception, and hands it off to
the runtime system, which is responsible for finding code to handle the
error.
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Exceptions (cont.)

e \Where does the runtime system look?

— The run-time system searches backwards through the chain of method
calls, beginning with the method in which the error occurred, until it
finds a method that contains an appropriate exception handler.

— What is an appropriate exception handler?

x The type of the exception is the same as the type of exception
handled by the handler.
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Exceptions (cont.)

e \What are the advantages?

— Separates error handling code from regular code.
— Automatically propagates errors up the chain of method calls.
— Groups error types and differentiates errors.
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Throwing Exceptions

e Example

class ConstPoly extends APolynomial

{

public APolynomial getLowerPoly()
{

throw new java.util.NoSuchElementException(
"Constant polynomial has no lower-order term!");
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Throwing Exceptions (cont.)

e The argument to throw must be a reference to an instance of a subclass
of the class throwable.

— throwable contains a reference to a descriptive string.

e There are several predefined subclasses of throwable.

— Exception
* RuntimeException (extends Exception)
— Error (not usually recovered from)

e The first type is called a checked exception. The compiler verifies that
these exceptions are handled or specified.
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Throwing Exceptions (cont.)

e The next two types are special: An instance of a subclass of these
classes can be thrown from anywhere without specification. Examples of
subclass RuntimeException are

— OutOfMemoryException

— NullPointerException

— NoSuchElementException

— ArrayIndex0OutOfBoundsException
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Catching Exceptions

e Example

try {
APolynomial pcO = new ConstPoly(0.0); // pcO == 0.
APolynomial dummy = pcO.getLowerPoly();
// Not Reached.

} catch (java.util.NoSuchElementException e) {
System.err.println(e) ;

}

e Prints: java.util.NoSuchElementException: Constant polynomial
has no lower-order term!
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Exceptions Can’t Be Ignored...

A method can’t ignore exceptions raised by another method that it calls.
It must either...

e catch the exception or

e specify the exception.
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Exceptions Can’t Be Ignored...(cont.)

e Example

methodl {
try {
call method2;
} catch (exception) {
doErrorProcessing;

}
}

method2 throws exception {
call methodThatThrowsException;

}
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Catching multiple exceptions

e An arbitrary number of catch statements can follow the try statement.
try {
brokenMethodThrowsExcTypel20r3() ;
neverCalledMethod () ;
} catch (ExcTypel e) {
} catch (ExcType2 e) {
} catch (ExcType3 e) {

}
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Throwing multiple exceptions

e A method can (potentially) throw an arbitrary number of exceptions (but
not at once).

class Example {

void brokenMethodThrowsExcTypel120r3()
throws ExcTypel, ExcType2, ExcType3 {

try {

} catch (ExcType4 e) {
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The finally statement

e Exceptions can cause control to leave the current method without
completing the method’s execution. If there is cleanup code at the end
of the method, it will never get called.

e The finally statement (together with try) enables a method to
designate code for execution even if an exception occurs.

12



Comp 212 January 31, 2000

The finally statement (cont.)

e Example

try {
thisMethodThrowsExc () ;
} finally {

myCleanup () ;
+

e myCleanup() is called regardless of whether an exception is thrown.

e The finally statement is not a handler. After myCleanup() is

performed, the exception continues up the call chain in search of a
handler.
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