Comp 212 January 31, 2000

Exceptions

e An exception is an event that occurs during the execution of a program
that disrupts the normal flow of instructions.

e Many kinds of errors can cause exceptions:

— Hardware error
— Programming error: dereferencing null

e \When such an error occurs within a Java method, the method creates
an exception object, which describes the exception, and hands it off to
the runtime system, which is responsible for finding code to handle the
error.



Comp 212 January 31, 2000

Exceptions (cont.)

e \Where does the runtime system look?

— The run-time system searches backwards through the chain of method
calls, beginning with the method in which the error occurred, until it
finds a method that contains an appropriate exception handler.

— What is an appropriate exception handler?

x The type of the exception is the same as the type of exception
handled by the handler.



Comp 212 January 31, 2000

Exceptions (cont.)

e \What are the advantages?

— Separates error handling code from regular code.
— Automatically propagates errors up the chain of method calls.
— Groups error types and differentiates errors.



Comp 212 January 31, 2000

Throwing Exceptions

e Example

class ConstPoly extends APolynomial

{

public APolynomial getLowerPoly()
{

throw new java.util.NoSuchElementException(
"Constant polynomial has no lower-order term!");



Comp 212 January 31, 2000

Throwing Exceptions (cont.)

e The argument to throw must be a reference to an instance of a subclass
of the class throwable.

— throwable contains a reference to a descriptive string.

e There are several predefined subclasses of throwable.

— Exception
* RuntimeException (extends Exception)
— Error (not usually recovered from)

e The first type is called a checked exception. The compiler verifies that
these exceptions are handled or specified.



Comp 212 January 31, 2000

Throwing Exceptions (cont.)

e The next two types are special: An instance of a subclass of these
classes can be thrown from anywhere without specification. Examples of
subclass RuntimeException are

— OutOfMemoryException

— NullPointerException

— NoSuchElementException

— ArrayIndex0OutOfBoundsException



Comp 212 January 31, 2000

Catching Exceptions

e Example

try {
APolynomial pcO = new ConstPoly(0.0); // pcO == 0.
APolynomial dummy = pcO.getLowerPoly();
// Not Reached.

} catch (java.util.NoSuchElementException e) {
System.err.println(e) ;

}

e Prints: java.util.NoSuchElementException: Constant polynomial
has no lower-order term!



Comp 212 January 31, 2000

Exceptions Can’t Be Ignored...

A method can’t ignore exceptions raised by another method that it calls.
It must either...

e catch the exception or

e specify the exception.



Comp 212 January 31, 2000

Exceptions Can’t Be Ignored...(cont.)

e Example

methodl {
try {
call method2;
} catch (exception) {
doErrorProcessing;

}
}

method2 throws exception {
call methodThatThrowsException;

}



Comp 212 January 31, 2000

Catching multiple exceptions

e An arbitrary number of catch statements can follow the try statement.
try {
brokenMethodThrowsExcTypel20r3() ;
neverCalledMethod () ;
} catch (ExcTypel e) {
} catch (ExcType2 e) {
} catch (ExcType3 e) {

}

10



Comp 212 January 31, 2000

Throwing multiple exceptions

e A method can (potentially) throw an arbitrary number of exceptions (but
not at once).

class Example {

void brokenMethodThrowsExcTypel120r3()
throws ExcTypel, ExcType2, ExcType3 {

try {

} catch (ExcType4 e) {

11



Comp 212 January 31, 2000

The finally statement

e Exceptions can cause control to leave the current method without
completing the method’s execution. If there is cleanup code at the end
of the method, it will never get called.

e The finally statement (together with try) enables a method to
designate code for execution even if an exception occurs.

12



Comp 212 January 31, 2000

The finally statement (cont.)

e Example

try {
thisMethodThrowsExc () ;
} finally {

myCleanup () ;
+

e myCleanup() is called regardless of whether an exception is thrown.

e The finally statement is not a handler. After myCleanup() is

performed, the exception continues up the call chain in search of a
handler.

13



