Comp 212 March 26, 2001

Binary Search

, N \
Y AN \
, / \ \
, / \ \
/ / \ \
/ / \ \
/ / \ N
/ / \ \
/ / \ \
! \ \ ! \ \
/ I\ \ / I\ \
/ I \ / I \
/ I \ / I \
/ o \ ! o \
/ / \ \ / ! \ '
/ / \ \ / ! \ \
/ \ \ \ / \ \ \ _\ ,4
/ \ , , / \ , , | og(n+1) =5
I A ! T i 1 T i 1 T i T 2
I i \ I N \ I 0 \ I 0 \
I P \ I N \ I N \ | N \
I) \ I D \ I D \ I D \
| Lo \ I L \ | P \ | P \
I Lo \ I P \ I ;o \ I ;o \
I Lo \ I Lo \ I P \ I P \
I P \ I P \ | . \ | . \
| , \ \ I , \ \ |) \ \ l) \ \
[I e O O [| | | | | | | |
!] ! |] ! |] ! |] ! |] ! !] ! |] ! |] !
! I ! I 1 ! I 1 ! I 1 ! I 1 ! ! I ! I 1 ! I I !
! " ! I " ! I " ! I " ! I " ! ! " ! I " ! I " !
! I b I b I b I b I [I b I b I !
! 1 L I L I L I L I [1 L I L I !
! 1 L 1 L 1 L 1 L 1 v 1 L 1 L 1 !
! 1 b 1 b 1 b 1 b 1 o 1 b 1 b 1 !
! I (| I (| I (| I (| I b I (| I (| I !
e e e e s e e e e e e e e o s

e [loga(n+1)] = O(log n) where n is the length of the array.

Comp 212

March 26, 2001
Still O(log n)?

e Suppose that we partition the array into two parts of length n/p and
n — n/p at each step.

\
I\ \
/ Iy \
! Y \
! ! \ \
! ! \ \
! ! \ \
! ! \ \
! ! \ \

] |] 1

[" \ I " \

1 I\ \ i I\ \

| P \ | P \
! o \ I o \
i | \ \ | | \ \
1 | \ \ | | \ \
! | \ \ | | \ \
1 | \ \ L | \ \
4+ 1 LI |
I n |
| n |
I I |
I I |
I I |
I 1 |
I 1 |
o —
I 1 |
I Il |
I n 1
I I |
I [|
I [|
I I |
I [|

Comp 212 March 26, 2001

Yes.

e The longest traversal of the larger partition is only a constant factor
(p — 1) larger than the longest traversal of the smaller partition.

Comp 212 March 26, 2001

Can We Improve On Binary Search?

e Suppose that keys are uniformly distributed.

e How do you find a number in a phone book?

— Specifically, if | asked you find “Alan Cox" in the phone book would
you start in the middle?

Comp 212 March 26, 2001

Interpolation Search

e \We can rewrite
mid = (lo+ hi)/2 (1)
as
mid = lo + (hi — lo)/2 (2)

and replace (hi — lo)/2 with an expression that places us closer to what
we're looking for

(key — keys[lo + 1]) * (hi — lo)

d =1 3
e o keys|hi — 1] — keys|lo + 1] (3)

e Note: The IOrdered interface is unsufficient for interpolation search.

Comp 212 March 26, 2001

Interpolation Search (cont.)

e Consider the following array of elements:

9, 21, 32, 38, 51, 59, 68, 80, 91, 97, 113, 119, 131, 142, 149

e How many steps would binary search require in order to find 687

e How many steps would interpolation search require in order to find 687

Comp 212 March 26, 2001

Interpolation Search (cont.)

e Suppose that /Ordered includes a method int sub(IOrdered key)

private int findIndex(IOrdered key) {

int lo = -1;

int hi = _firstEmptyKeyValuePair;

while (lo + 1 != hi) {
I0rdered loKey = _pairs[lo + 1].getKey();
I0rdered hiKey = _pairs[hi - 1].getKey(Q);
int mid = lo + key.sub(loKey)*(hi - 1lo)/hiKey.sub(loKey) ;
switch (_pairs[mid].getKey() .compare(key)) A
case I0rdered.EQUAL: return mid;
case I0rdered.GREATER: hi = mid; break;
case I0Ordered.LESS: lo = mid; break;
+

+

return lo;

}

Comp 212 March 26, 2001

The Computational Cost of Interpolation Search

o If the keys are uniformly distributed, the number of steps in an
interpolation search is O(log log n).

e If, instead, the keys are not uniformly distributed, e.g.,

1, 2, 3, 4, 5, 6, 7, 8, 9, 999

and we search for 9, performance is poor.

Comp 212 March 26, 2001

The Template Pattern

e Consider the abstract class ASorter in the handout.

public final void sort(int[] A, int lo, int hi)
{
if (lo < hi) {
int s = split(A, lo, hi);
sort (A, lo, s-1);
sort(A, s, hi);
join(A, lo, s, hi);
+
}

public abstract int split(int[] A, int lo, int hi);

public abstract void join(int[] A, int lo, int s, int hi);

Comp 212 March 26, 2001

The Template Pattern

e The sort() method, as shown, is NOT abstract. Class ASorter defines
sort () in terms of split() and join(), two abstract methods.

— It is up to all future subclasses of ASorter to concretely define what

split() and join() are supposed to do.
— The method sort () represents what we call an "invariant” behavior

for ASorter.
— The "variants” in this case are the split() and join() methods.
It is the responsibility of all the variants (i.e. subclasses) of ASorter

to do the actual work in split() and join().
e The method sort() is an example of the " Template Method Pattern”.

— A "template method” is a method that makes calls to at least one
abstract method in its own class. It serves to define a fixed algorithm
that all future subclasses must follow.

10

Comp 212

The Template Pattern (cont.)

March 26, 2001

e The following is an UML diagram describing the template method

pattern.

wrvartantBehasaor () [

_— = -

Abstraet T

+ irsrariantBehavior
+ varianiBehavior]
+ variantBehaviors
+ varigniBehavior N

Yarianitl

+ -rariantPehaior]
+ varnantPehavior?
+ varantPehadort]

YVariani2

+ -rariantPehaior]
+ varnantPehavior?
+ varantPehadort]

11

Comp 212 March 26, 2001

The Template Pattern (cont.)

e In Java, it's good practice to specify template methods with the key
word final.

— Roughly speaking, the key word final means "whatever is defined as
final cannot be changed”.
x A final class is a class that cannot be extended. A final method
is a method that cannot be overridden by any of the subclasses. A
final field is a field that, once initialized, cannot be modified.

12

